Prikazani su postovi s oznakom ccres spirulina. Prikaži sve postove
Prikazani su postovi s oznakom ccres spirulina. Prikaži sve postove

petak, 24. kolovoza 2012.

SPIRULINA


photo         by       CCRES      SPIRULINA 

Spirulina   is simply  the  world’s most  digestible  natural  source  of  high quality  protein,  far  surpassing the  protein bio availability of even beef  ( which  most  people  consider  to  be  th e  #1 source of  protein ). The  digestive  absorption  o f  each  gram  of  protein  in  spirulina  is  four  times  greater  than  the  same  gram  of   protein   in   beef.  And   since   spirulina   already   contains   three   times   more   protein  ( by  weight )  to   begin   with,   the   net result is   that  , ounce   for   ounce, spirulina   offers   twelve   times   more  digestible   protein     than   beef. 
That’s   an astounding   difference.  

  
photo         by       CCRES      SPIRULINA 

 It   means    that   spirulina   is   the   ideal  food  source   for   people   working  to  get   more  protein   into  their diets : 
•  People on low-carb, high-protein diets.
People who exercise vigorously or engage in strength training. 
People who are frail, who have trouble gaining weight, or who are malnourished. 

 
photo         by       CCRES      SPIRULINA 

In   fact,   there’s   probably   no  better single food  source  on  the  planet  than  spirulina  for  these  people.  The  protein   found   in  spirulina   is  also   a complete  protein,  meaning   that   it  contains  all eight  essential   amino acids, unlike  beans, whole   grains   and other  plant- based   foods   that   typically   lack  one  or  more  amino acids.

  
pho         to by       CCRES      SPIRULINA 

CCRES ALGAE PROJECT
 part of 
Croatian Center of Renewable Energy Sources (CCRES)


utorak, 8. svibnja 2012.

CCRES - ALGAE AND BIOFUEL



CROATIAN CENTER of RENEWABLE ENERGY SOURCES 
(CCRES)
 
 ALGAE AND BIOFUEL
 

Algae: An Important Source for Making Biofuels

Biofuels are the alternative fuels like ethanol, butanol, biodiesel, methane and others obtained from the biomass. Biomasses are the wasted materials obtained from the plants, animals and human beings. With the increasing prices of the crude oil and importance of achieving self-reliance in energy and growing concern for the environment alternative fuels are receiving more government and public attention.

The government of US has set the targets for using of 36 billion gallons of biofuels by the year 2022 as a result most of the gasoline sold here is mixed with ethanol. Similarly, biodiesel mixed with petroleum diesel is found to create lesser pollution without affecting the performance of the engines. Methane gas is also increasingly used for the production of electricity and also driving the vehicles. Ethanol, biodiesel, and methane are all biofuels obtained from biomass like wasted crops, crops containing sugar, vegetable oil etc.

Due to increasing demands of the biofuels, many farmers are now tempted to raise the crops that would yield biofuels instead of the food crops. This leads to misuse of limited resources available in the form energy, fertilizers and pesticides. In some parts of the world large areas of forests have been cut down to grow sugarcane for ethanol and soybeans and palm-oil tress for making biodiesel. US government is making efforts to make sure the farming for biomass materials does not competes with the farming of food crops and that the farming of biomass would require lesser fertilizers and pesticides.

Algae used as Biomass

One of the most important promising sources of biofuels is algae. Algae are single celled (most of them) microorganisms that grow in salt water, fresh water and even in contaminated water. Algae can grow in sea, rivers, ponds, and also on land not suitable for production. Like other plants, algae also absorb energy from the sun in the presence of atmospheric carbon dioxide by the process called photosynthesis. Just like other wasted plants and crops, algae also carry energy and it can be used as an important biomass material. There are more than 65,000 known species of algae having different colors like green, red, brown and blue-green that offer wide range of options for obtaining the biofuels from them.

Algae keep growing extensively in the nature and it generates lots of waste that could even create problems of disposal. Since algae carries energy, it can be used as an important source of alternative or renewable energy since algae is available in abundant quantities that can last forever. Algae can be used as the biomass materials to obtain various biofuels. Various colonies of algae can be considered to be small biological factories containing lots of energy.

Biofuels from Obtained from Algae

Like the wastes from the plants, the algae can also be used as the biomass to produce various types of biofuels. One of the most popular types of biofuels, biodiesel, is obtained from the vegetable oil. The same biodiesel can also be obtained from algae oil. The biodiesel from algae can be mixed with the petroleum diesel and used for the running of the vehicles. It can also be used as the fuel for jets, airplanes, refineries, and pipelines. The biodiesel obtained from algae can be readily used with automobile and jet engines without the need to make any modifications in the engine. It meets all the specifications of the petroleum diesel fuel.

The algae biomass can also be used for making ethanol and butanol biofuels, which are type of alcohols. Butanol is considered to have more efficiency than ethanol and it is obtained from dried algae that act as a biomass. The carbohydrates extracted from algae are converted into natural sugars, which are then converted into butyric, lactic and acetic acids by the process of fermentation. Further fermentation of butyric acid is carried out to produce butanol.

The biomass obtained from algae can also be used to produce biogas that contains methane and carbon dioxide. Methane is an important component of natural gas, so this biogas can be used just like the natural gas for producing heating effect and also to produce electricity.

Advantages of using Algae as Biomass

One of the important advantages of algae it that it can be grown in almost any type of water: salt, fresh, and even contaminated water. It can be grown in vast sea and river water, small rain water ponds and even commercial or domestic manmade ponds. It can also be grown on non-arable unproductive lands increasing the utility of waste lands.

Another important advantage of growing algae for producing biofuels is that it does not displace the farmland used for growing the food crops. The farmers using various resources for producing biodiesel instead of the food crops has been one of the major concerns for the government, algae helps solving this tricky problem.

Algae have the potential to yield 30 times more energy than the crops grown on land, which are currently being used to produce the biofuels. This would further encourage the use of algae for producing biofuels and land for producing food crops.

Another important advantage of algae is that it uses carbon dioxide for its growth. Thus the pollution causing carbon dioxide produced from the other sources can be utilized to grow algae, which helps keeping the environment cleaner. 


CCRES 
special thanks to   
Escapeartist, Inc
 CROATIAN CENTER of RENEWABLE ENERGY SOURCES 
(CCRES)

utorak, 17. travnja 2012.

CCRES ALGAE PROJECT




CCRES ALGAE PROJECT

Algae is uniquely suited to serve as the foundation for a new generation, the next industrial age of renewable and low carbon transportation fuels. It addresses and solves many of the pressing issues of our time, from climate change, to energy security, to jobs. It sets an infrastructure that will require fewer compromises and more reliance on ourselves to feed our own energy consumption needs.

Algae is one of nature′s most prolific and efficient photosynthetic plants; in fact, it is the source of the earth′s crude oil when algae bloomed millions of years ago. Nearly all of algae′s energy is concentrated in the chloroplast—the engine that turns sunlight and CO2 into organic carbon, resulting in oils easily refined into gasoline, diesel, and jet fuel. Further, algae has a short growing cycle and does not require arable land or potable water. Algae′s number one nutrient source is CO2, consuming 13 to 14 kg of C02 per gallon of green crude. Algae can be grown quickly in salt water in the desert.

The process for making algae into fuel at a very base level is this: Sunlight and CO2 are the source of energy and carbon dioxide, rather than sugar or other organic material. By applying the principals used in biotechnology, CCRES can produce oil in algae that is highly branched and undecorated - the way that traditional crude is – to get a biological crude molecularly similar to light sweet crude. This Green crude can be than processed at a refinery just as traditional crude to make all three major distillates – gasoline, diesel, and jet fuel.

Algae are the most efficient photosynthetic plants on the planet as no energy goes into making roots, stems, seeds, or flowers. More energy (roughly 6-50 times more) is produced per acre, per year, with algae versus other feedstocks.

CCRES ALGAE PROJECT
part of 
Croatian Center of Renewable Energy Sources (CCRES)

četvrtak, 5. travnja 2012.

Using algae for reducing the CO2


Algae live on a high concentration of carbon dioxide and nitrogen dioxide.  These pollutants are released by automobiles, cement plants, breweries, fertilizer plants, steel plants. These pollutants can serve as nutrients for the algae.
When fuels are burned there remains, besides ash, a certain number of gas components. If these still contain combustion heat, they are called heating gases. As soon as they have conveyed their energy to the absorbing surfaces of a heat exchanger, they are called flue or stack gases.

It further contains a small percentage of pollutants such as particulate matter, carbon monoxide, nitrogen oxides and sulfur oxides.

Carbon dioxide (CO2) 
—the primary greenhouse gas responsible for global warming—along with other pollutants.
Its composition depends on what is being burned, but it usually consists of mostly nitrogen (typically more than two-thirds) derived from the combustion air, carbon dioxide (CO2) and water vapor as well as excess oxygen (also derived from the combustion air).

Using algae for reducing the CO2 concentration in the atmosphere is known as algae-based Carbon Capture technology. The algae production facilities can thus be fed with the exhaust gases from these plants to significantly increase the algal productivity and clean up the air.  An additional benefit from this technology is that the oil found in algae can be processed into a biodiesel. Remaining components of the algae can be used to make other products, including Ethanol and livestock feed.

This technology offers a safe and sustainable solution to the problems associated with global warming.
CCRES SPIRULINA
project of
Croatian Center of Renewable Energy Sources (CCRES)