Prikazani su postovi s oznakom CCRES - ALTERNATIVE ENERGY. Prikaži sve postove
Prikazani su postovi s oznakom CCRES - ALTERNATIVE ENERGY. Prikaži sve postove

subota, 19. ožujka 2016.

ALL ABOUT ALGAE AND THE ORIGIN OF EUKARYOTIC CELLS




   ALGAE AND THE ORIGIN OF EUKARYOTIC CELLS

Life began about 3.5 billion years ago in the oceans with the appearance of prokaryotes.

The oldest reliable date for the appearance of the eukaryotes is about 1.9 billion years ago, when the first members of a group of unicellular organisms called acritarchs appear in the fossil record  in China.

Acritarchs …
Are probably the remains of a group of ancient eukaryotes
Were plankton
Some resemble dinoflagellates while others resemble green algae
Their relationship among living organisms is uncertain

http://www.ucl.ac.uk/GeolSci/micropal/acritarch.html
http://www.geo.arizona.edu/palynology/ppacrtrc.html

Eukaryotic cells came into existence probably by a process called endosymbiosis.

Mitochondria arose first, as an early eukaryotic cell engulfed but did not digest a bacterium capable of aerobic respiration. The two organisms lived together, one inside the other, and both benefited.

Fungi, plants and animals are all probably derived from protists.

Fungi and animals are eukaryotes organisms that lack plastids.

Another line of evolution, one that had mitochondria, entered another endosymbiosis with a photosynthetic cyanobacterium, which later evolved into a chloroplast.

This line gave rise to algae including green algae, which in turn produced true plants, the embryophytes.

Several clades exist that still have some extant members whose plastids have numerous prokaryotic characters. Chloroplasts of red algae especially resemble cyanobacteria.

The kingdom Protista contains eukaryotes that cannot be assigned with certainty to other kingdoms

The kingdom Protista is an artificial grouping and classification does not represent evolutionary relationships.

This kingdom is also known as Protoctista.

Protists covered in this course are those photosynthetic organisms that function like plants in ecosystems.

They are the "grass of the ocean".

Protists to be studied include:

Algae: photosynthetic organisms studied by phycologists.
Slime molds and oomycetes: heterotrophic organisms that are traditionally studied by mycologists, although these organisms are not fungi.

Another group of protists not included in this course are the ciliates, flagellates, and other heterotrophs.

The phylogenetic relationship among the different groups of protists is controversial, e.g. the relationship between the green and brown algae.

ORIGIN OF EUKARYOTIC CELLS

DNA Structure

In prokaryotes, proteins do not surround the DNA. Its numerous negative charges are neutralized by calcium ions. In eukaryotes, the DNA is packaged with histones forming nucleosomes. The DNA condenses into chromosomes.

The genome is a short circle of DNA containing about 3,000 genes, and lack introns. In eukaryotes, the DNA molecule carries thousands of genes. The chromosomes of eukaryotes have a homologous and never occur as a single chromosome in normal circumstances. Eukaryotic genes have introns, which do not code for any type of RNA.

Nuclear structure and division

Prokaryotic cells lack nucleus. The DNA circle is attached to the plasma membrane. As the cell grows and the plasma membrane expands, the two daughter DNA molecules are separated.

The nuclei of plants, animals and fungi are very similar in structure, metabolism, mitosis and meiosis. Apparently these three clades diverged after the nucleus had achieved a high level of complexity.

In eukaryotes, most of the DNA is found in the nucleus.

The nucleus is surround by two double-layered membranes with nuclear pores.

A nucleolus is present.

The nuclei are typically haploid or diploid. Mitosis assures that each daughter cell receives one of each type of chromosome to maintain the species number of chromosomes.

Meiosis usually occurs as part of sexual reproduction. The pairing of paternal and maternal homologous chromosomes, followed by crossing over and genetic recombination assures genetic diversity.

Some groups of organisms have a unique mitotic process that may represent an earlier divergence in the history of eukaryotes.

Organelles

Prokaryotes lack membrane bound organelles. They have ribosomes and storage granules, which are not-membrane bound organelles.

Photosynthetic prokaryotes have folded plasma membrane that projects into the cytoplasm.

Eukaryotes have membrane bound organelles that compartmentalize the cell and perform different functions simultaneously.

Ribosomes of prokaryotes are 70S, being smaller and denser than the 80S ribosomes of eukaryotes.

Flagella and cilia are uniform in eukaryotes having a 9 + 2 arrangement of microtubules. A few prokaryotes have flagella, and never have the 9+2 arrangement. They are not composed of microtubules or tubulin.

Endosymbiotic Theory.

This hypothesis attempts to explain the origin of eukaryotic organelles, mitochondria and chloroplasts.

In 1905, K. C. Mereschkowsky had speculated that plastids were prokaryotes living inside eukaryotic cells.

In the 1960s, plastids and mitochondria were discovered to have their own DNA and ribosomes, both with prokaryotic features.

Plastids and mitochondria divide similarly to prokaryotes.
They lack microtubules.
Their DNA is small and circular, contains a small number of genes, and is organized like prokaryotic DNA.
Their ribosomes are sensitive to the same antibiotics that interfere with prokaryotic ribosomes.

Chloroplasts and mitochondria could have originated from bacteria that were phagocytized by a large heterotrophic prokaryote.

Mitochondria could have derived from an aerobic prokaryote that was ingested but not digested.
Chloroplasts could have been derived from a photosynthetic prokaryote, probably a cyanobacterium.
Chloroplasts originated several times.
An endosymbionts is an organism that lives within another dissimilar organism.

These bacteria were then adopted as endosymbionts rather than being digested.

With time these endosymbionts became simplified and specialized to perform only photosynthesis or respiration.

The DNA of the endosymbionts and many or its functions were transferred to the nuclear DNA.

The nuclear membrane could have originated from an infolding of the plasma membrane of a prokaryote.

Prokaryotes have their single circular chromosome attached to the plasma membrane.

Infolding of other portions of the plasma membrane may have given origin to the ER and Golgi complex.

Primary endosymbiosis gave rise to a clade containing red algae, green algae and a small group called glaucophytes.

Glaucophyte chloroplasts still produce a thin film of cyanobacterial wall between themselves and the cell.
Red algal chloroplasts have chlorophyll a but not b, and the cyanobacterial pigment phycobilin, organized into particles called phycobilisomes.
Green algal cells do not have traces of bacterial wall or phycobilin, but instead have chlorophylls a and b, and carotenoid accessory pigments, all of which are similar to chloroplasts in true plants.

Chloroplasts have chlorophyll a but not bacteriochlorophyll. This suggests that the cyanobacteria and not photosynthetic bacteria is the ancestor of chloroplasts.

Prochlorophytes are a type of cyanobacteria that have both chlorophyll a and b, and lack phycobilins.

The prochlorophytes Prochloron and Prochlorothryx are closely related to chloroplasts and are thought to have a common ancestor. Prochloron exists as an obligate endosymbiont of marine invertebrates called ascidians.

Secondary endosymbiosis happened when a eukaryote engulfed another eukaryote.

Euglenoids originated when a eukaryote engulfed a green alga. The green alga has become so reduced that only the chloroplast remains.

Heterokonts have two different flagella of different length and ornamentation. They appear to be monophyletic.

One flagellum is long and ornamented with distinctive hairs (tinsels).
The other flagellum is shorter and smooth (whiplash).

Heterokonts are also known as stramenopiles.

Molecular sequence and these unique flagella provide evidence for the close relationship of oomycetes, chrysophytes, diatoms, and brown algae.

They were involved in one or several endosymbiosis with entire cells of red algae.

Heterokonts appear to have diversified and then some entered into secondary endosymbiosis and became photosynthetic, whereas others did not. Lack of chloroplasts in these heterokonts is an ancestral condition.

Pigmented heterokonts may have originated through one or several secondary endosymbioses.

Most pigmented heterokonts have chlorophyll a and c, lack phycobilins, and have four chloroplast membranes instead of two as in red algae, green algae, glaucophytes and plants. Some have the remnant of red alga nucleus called the nucleopmorph, which still contains a nuclear envelope and a few genes.

These cells have four types of DNA; heterokont eukaryotic nucleus, red alga eukaryotic nucleomorph, chloroplast prokaryotic DNA circles, a mitochondrion prokaryotic DNA circles.

Types of cytokinesis

Several types of cytokinesis occur in algae.

Cytokinesis may occur by furrowing or by cell plate formation.

In almost all algae with wall, cytokinesis is similar to that of plants.

In some green algae, the phycoplast consists of microtubules oriented parallel to the plane where the new wall will form, which is perpendicular to the orientation of the spindle.

Embryophytes arose from green algae that divide with a phragmoplast rather than a phycoplast.


CHARACTERISTICS OF VARIOUS GROUPS OF ALGAE

The following notes are base on Raven et al, 8th Edition, and Mauseth.

DIVISION CHLOROPHYTA

Also known as green algae.

A diverse group of about 17,000 species.

Most chlorophytes are aquatic, but some green algae can live on the surface of snow, on tree trunks, in soils, or symbiotically with protozoans, hydras or lichen-forming fungi.

Chlorophytes range in size from microscopic to quite large: unicellular, colonies, branched and unbranched filaments, thalloid.

Green algae have chlorophylls a and b and store starch as a food reserve inside their plastids.

Most green algae have firm cell walls composed of cellulose, hemicellulose and peptic substances.

The flagellated reproductive cells of some green algae resemble that of plant sperm.

Based on studies of mitosis, cytokinesis, reproductive cells and molecular similarities, the green algae have been divided into several classes. Three of these classes will be studied here:

Body construction in Green Algae

Motile colonies: aggregation of unspecialized cells; flagella present: this is considered to be an ancestral condition, a plesiomorphy.
Nonmotile colonies: similar to the motile colonies but cells have lost their flagella; this is considered an apomorphy.
Filamentous body: cells divide transversally, but sometimes producing a branch; some parts of their body may become specialized, e.g. holdfast for attachment.
Membranous body: cell division occurs in two planes forming a sheet of cells.
Parenchymatous body: cell division occurs in three planes; cells are interconnected by plasmodesmata and true parenchyma tissue is formed.
Coenocytic or siphonous body: karyokinesis occurs without cytokinesis resulting in a large multinucleate cell; the cell remains unspecialized.

Life cycles in Green Algae

The alternation of heteromorphic generations in angiosperms can be traced to green algae.

Monobiontic species consists of only one free-living generation. In some, the haploid phase represents the individual; in others, it is the diploid phase.

In dibiontic species, both stages of the alternation of generations are multicellular

The gametophyte is haploid and the sporophyte diploid.
The two phases may be isomorphic (similar) or heteromorphic (different body plan).
Sporophytes produce spores in sporangia (sing. sporangium).
The sporophyte usually produces spores by meiosis, but some by mitosis – these spores are diploid and produce a new sporophyte in a form of asexual reproduction.
Some gametophytes produce spores by mitosis, which develop into new gametophytes – asexual reproduction.
Gametes are produced in gametangia.
Gametes may be isogamous, anisogamous or oogamous.

Cytokinesis in the Chlorophyta

The following notes are based on Raven et al.

The classes Chlorophyceae and Ulvophyceae form a phycoplast during cell division, which is system of microtubules parallel to the plane of cell division.

Nuclear envelope persists during mitosis.
Mitotic spindle forms and then disappears at telophase.
Daughter nuclei are separated by the phycoplast in which the microtubules lie perpendicular to the axis of division.
The role of the phycoplast is presumed to ensure that the cleavage furrow will pass between the two daughter nuclei.
Cytokinesis is by cell plate formation or development of a furrow.
The Chlorophyceae form four narrow bands of microtubules known as flagellar roots, which are associated with the flagellar basal bodies (centrioles) of the flagella.
The Ulvophyceae have a persistent spindle but do not develop a phragmoplast or cell plate.

The class Charophyceae does not form a phycoplast but develop a phragmoplast like land plants.

Formation of a phragmoplast, which is parallel-aligned microtubules and microfilaments at right angles to the forming cell plate, is to generate a guiding and supporting matrix for the deposition of new cell plate.

The phragmoplast is a system of microtubules, microfilaments and ER vesicles that is oriented perpendicular to the plane of division.
It serves in the assembling of the cell plate and the cell wall.
As the cell plate matures in the center of the phragmoplast, the phragmoplast and developing cell plate grow outward until they reach the of the dividing cell. See pages 64-67in Raven et al.
Spindle is persistent through mitosis.
Cytokinesis is by cell plate formation or furrowing, just like bryophytes and vascular plants.

The flagellar root system of microtubules provides anchorage to the flagellum.
The multilayered structure is often associated with one of the flagellar roots.
The type of multilayered structure is often an important taxonomic character.
The flagellar root had multilayered structure of the Charophyceae is very similar to that found in the sperm of bryophytes and some vascular plants.


Class Chlorophyceae

There are approximately 350 genera and 2650 living species of chlorophyceans.

Mostly freshwater species.

They come in a wide variety of shapes and forms, including free-swimming unicellular species, colonies, non-flagellate unicells, filaments, and more.

Cytokinesis may be by furrowing or by cell plate formation.

When flagellate, the flagella are apical and equal in length, and directed forward.

They also reproduce in a variety of ways, though all have a haploid life cycle, in which only the zygote cell is diploid.

The zygote will often serve as a resting spore, able to lie dormant though potentially damaging environmental changes such as desiccation.

Chlamydomonas is motile unicellular chlorophyte.

Two equal flagella.
One chloroplast with a red photosensitive eyespot, or stigma, aids in the detection of light.
Chloroplast has a pyrenoid, which is typically surrounded by a shell of starch.
The cell wall is made of a carbohydrate and protein complex inside which is the plasma membrane; there is no cellulose in the cell wall.
Reproduction is both sexually and asexually.
See the Life Cycle diagram on page 331 in Ravel et al.

Volvox is a motile colony.

The colony consists of a hollow sphere called the spheroid, made up of a single layer of 500 to 60,000 vegetative, biflagellated cells that serve primarily in photosynthesis.
Specialized reproductive cells undergo repeated mitoses to form many-celled spheroids, which are released after producing an enzyme that dissolves the parental matrix.
Sexual reproduction is oogamous.

Chlorococcum is a unicellular, non-motile chlorophyte.

Found in the soil.
Reproduces by forming biflagellated zoospores.
Sexual reproduction happens by the fusion of biflagellated gametes, which fuse in pairs to form zygotes.
Meiosis is zygotic.

Hydrodictyon is a non-motile colony.

The individual cells are cylindrical and initially uninucleated and eventually becoming multinucleated.
The cells form a hollow cylinder.
At maturity, the cells contain a large, central vacuole surrounded by the cytoplasm containing the nuclei and a large reticulate chloroplast with numerous pyrenoids.
It reproduces asexually through the formation of many uninucleated, biflagellated zoospores.
The zoospores are not released but form an arrangement within the parent cell, then lose their flagella and form the components of a mini-net.
Sexual reproduction is isogamous and meiosis is zygotic.

There are also filamentous and parenchymatous Chlorophyceae, e.g. Oedogonium, Stigeoclonium, and Fritschiella.

Class Ulvophyceae

Mostly marine algae with a few representatives in fresh water.

Filamentous septate, filamentous coenocytic (siphonous) or thalloid

Filamentous species have large multinucleate cells separated by septa; some may be netlike others straight chains. They have a netlike chloroplast.
Siphonous algae are characterized by very large, branched, coenocytic cells
Thalloid species have a single nucleus and chloroplast.

Majority has one plane of division, unlike the Ulva with three planes

Spindle and nuclear envelope persist through mitosis.

Flagellated cells may have two, four or many flagella directed forward

Alternation of generations with a haploid gametophyte and diploid sporophyte.

They have sporic meiosis or a diploid, dominant life history involving gametic meiosis.

Cladophora is a filamentous septate ulvophyte.

It forms large blooms in fresh water.
There are both marine and fresh water species of Cladophora.
Each cell is multinucleated and has one single, peripheral, net-like chloroplast with many pyrenoids. Marine species have an alternation of isomorphic generations.
Most of the fresh water species do not have an alternation of generations.

Ulva consists of a two-cell thick flat thallus that may grow up to a meter in length.
It is known as sea lettuce.
Ulva is anchored to the substrate by a holdfast produced by extensions of the cells at its base.
The cells of the thallus are uninucleate and have one chloroplast.
Ulva is anisogamous and has an alternation of isomorphic generations.

Codium and Halimeda are examples of siphonous marine algae.

Very large, coenocytic cells that are rarely septate characterize siphonous algae.
Cell walls are only produced during reproduction.
Siphonous green algae are diploid, with gametes being the only haploid stage.
Halimeda has calcified cell walls.

Examples to study:
Thalloid: Ulva.
Siphonous: Acetabularia, Codium, Ventricaria, Halimeda.
Filamentous septate: Cladophora.

Class Charophyceae

Growth habit may be unicellular, filamentous, colonial or thalloid (parenchymatous).

Considered closely related to plants due to structural, biochemical and genetic similarities.

The orders Coleochaetales and Charales have plant-like characteristics. These include:

Asymmetrical flagellated cells always have two flagella.
Breakdown of the nuclear envelope at mitosis
Persistent spindles or phragmoplast at cytokinesis.
Presence of phytochrome, flavonoids and chemical precursors of the cuticle.
Other molecular features.

Spirogyra is an unbranched, filamentous charophyte.

Found in fresh water, often forming blooms.
Cells uninucleate.
Filaments are surround by a watery sheath.
Chloroplasts one or more, flat ribbon-like with numerous pyrenoids.
Asexual reproduction occurs by fragmentation.
There are no flagellated cells at any stage of its life cycle.
Sexual reproduction takes place through the formation of a conjugation tube.
The cytoplasm of one cells migrates to the other cell and function as isogametes.
A thick wall of sporopollenin surrounds the zygote.
Meiosis is zygotic.

Desmids are a large group of fresh water charophytes.

Lack flagellated cells.
Desmid cells consist of two sections of semi-cells joined by a narrow constriction.
Sexual reproduction is similar to Spirogyra.

Two orders of Charophyceae, the Coleochaetales and the Charales, resemble bryophytes and vascular plants.

They have plant-like microtubular phragmoplast operating during cytokinesis.
They are oogamous and their sperm are ultrastructurally similar to those of bryophytes.

Morphological and molecular studies indicate that an early basal split in the green algae gave rise to a chlorophyte clade containing most of the green algae, and a streptophyte clade that includes the Coleochaetales and Charales, zygnematalean green algae, and land plants (bryophytes and vascular plants).

Coleochaetales

Include branched filamentous and discoid genera.
Growth occurs at the apex or peripheral cells, and the plant is anchored in mud or silt by translucent rhizoids.
Coleochaete has uninucleate vegetative cells that each contains one large chloroplast with an embedded pyrenoid.
It reproduces asexually by zoospores that are formed singly within cells.
Sexual reproduction is oogamous.
The zygotes remain attached to the parental thallus, which stimulate the growth of a layer of cells that covers the zygotes.
These parental cells have wall ingrowths are believed to function in nutrient transport between gametophyte and sporophyte.

Charales

The thallus in some stoneworts is encrusted with white lime, giving a crusty texture (hence the name brittlewort).
The Charales exhibit apical growth.
The thallus is differentiated into nodal and internodal regions.
The nodal regions have plasmodesmata.
Sperms are produced in multicellular antheridia.
Eggs are produced in oogonia enclosed by several long, tubular, twisted dells.
Sperms are the only flagellated cells in their life cycles.
Zygotes are surround by sporopollenin.

Examples to study:

Filamentous: Spirogyra, desmids.
Thalloid: Coleochaete.
Branched filamentous: Chara


Division Rhodophyta

Red algae are mostly marine organisms found in tropical and warm waters. Fewer than 100 species occur in fresh water. Some occur in cooler regions of the world.

Many species are found in very deep water.

There are 4100 to 6000 known species.

Red algae are mostly structurally complex multicellular organisms with very few species unicellular or microscopic filaments.

They may grow attached to the substrate, submerged vegetation and a few are free floating.

Unique Features Of Cells

Their cell wall lack plasmodesmata but they have pit connections. It is not known if these pits are used for intercellular transport.

Red algae do not produce flagellated cells, and lack centrioles.

Most red algae cell walls are made of cellulose microfibrils that are densely interwoven and are held together by mucilage.

The mucilage is a sulfonated polymer of galactose such as agar and carageenan.

Some species called coralline algae, deposit CaCO3 in their walls.

Coralline algae play an important role in coral reef building.

Many produce toxic terpenoids that deter herbivores.

Food reserves are stored as floridean starch in granules.

Floridean starch resembles glycogen.

Chloroplasts are reddish (rhodoplasts) and contain chlorophyll a, α and β-carotene, accessory water-soluble pigments called phycobilins (phycocyanin, phycoerythrin, allophycocyanin).

These pigments absorb well green and blue-green wavelengths that penetrate deep into the water.
Chloroplast chemicals resemble those found in cyanobacteria and may have originated from this group by endosymbiosis.


Complicated Life Histories


Many reproduce asexually by discharging spores, called monospores, into the water.

All red algae have complex life cycles, reproduce sexually and have no flagellated stages.

Gametophyte, carposporophyte, tetrasporophyte.

The simplest form of sexual reproduction involves the alternation of a haploid gametophyte and a diploid sporophyte.

The gametophyte produces spermatangia (sing. spermatangium) that release nonmotile
The female gamete or egg is produced in the carpogonium, on a same gametophyte.
The carpogonium develops a protuberance called the trichogyne for the reception of the spermatia.
The spermatium fuses with the trichogyne and the nucleus travels to the female nucleus and fuses with it.
The resultant diploid zygote then produces a few diploid carpospores, which are release into the water.
Carpospores produce sporophytes that form haploid spores, which in turn produce new gametophytes.

In some red algae, the zygote produces a carposporophyte generation, which remains attached to the parent gametophyte.

The carposporophyte divides mitotically and eventually produces carpospores.
The carpospores are released and settle onto a substrate, and grow into separate diploid sporophytes.

In many red algae, the diploid zygote is transferred to another cell of the gametophyte called the auxiliary cell where it proliferates into many carpospores.

The carpospores produce a new generation called the tetrasporophyte.
Meiosis occurs I in specialized cells of the tetrasporophyte, called the tetrasporangia.
Each tetraspore germinates into a gametophyte.


Division Phaeophyta

Phaeophytes are also known as brown algae

It is an entirely marine group especially abundant in temperate and cold waters.

Common in the intertidal and subtidal zones; dominant alga of rocky shores.

About 1,500 species.

The Thallus

Size - few are microscopic, most much larger - up to 60 m. Larger forms with complex structure.

There are no known unicellular or colonial representatives of this group.

The simplest form of plant is a branched, filamentous thallus (pl. thalli): a relatively undifferentiated vegetative body.

The thalli range in complexity from simple branched filaments to aggregation of branched filaments called pseudoparenchyma.

Adjacent cells are connected by plasmodesmata without desmotubules connecting the ER.


Pigments

Cells contain numerous disk-shaped, golden-brown plastids that are similar both biochemically and structurally to those of chrysophytes and diatoms.

Chlorophyll a and c (no Chlorophyll b), ß-carotene, fucoxanthin and other xanthophylls.

Food reserves are typically complex polysaccharides, sugars and higher alcohols and sometimes fats.
Glucose and mannitol are polymerized together as laminarin.
Mannitol is a six-carbon sugar-alcohol; it is linked together with glucose in a beta-1,3 linkage.

The principal carbohydrate reserve is laminarin and true starch is absent.

There are two groups based on the presence or absence of pyrenoids.


Kelps

Kelps (Macrocystis and Nereocystis) and rockweeds have a highly differentiated bodies

The walls are made of cellulose and algin, an alginic acid, a long-chained heteropolysaccharide.
Some have stem-like, root-like, leaf-like organs.
Since they do not have vascular systems, these structures are not true stems, roots, or leaves. Termed rhizoid, holdfast, stalk or stipe, and blade.
Kelps have a meristematic region between the stipe and the blade.
Sargassum and Fucus grow from repeated divisions from a single apical cell.
Some species have floatation bladders.
Some free-floating species have lost the holdfast.

Some of the kelps have modified elongated cells in the center of the stipe that are capable of conducting carbohydrates from the blades near the water surface to the lower parts of the alga.

Some brown algae have evolved sieve tubes comparable to those found in food-conducting tissue of vascular plants. These are called trumpet cells.

Sieve tube elements are joined end-on-end by the sieve plates.

Of great economic importance: fertilizer, food especially in Japan, source of algin - stabilizer & moisture retainer in many products such as ice cream, cake frosting, paint, pharmaceuticals, processing of natural and synthetic rubber.

Life Cycle


Their life cycle involves an alternation of generation, and meiosis occurs during spore formation (sporic meiosis).

The ends of the branches are called receptacles and are swollen with large deposits of hydrophilic compounds. Scattered over the surface of the receptacles are small openings that lead to cavities called conceptacles. Gametangia develop in the conceptacles.

The gametophytes of the primitive brown algae produce reproductive structures called plurilocular gametangia. They may function as male or female gametangia or produce flagellated haploid spores that give rise to new gametophytes.

The diploid sporophyte produces both plurilocular and unilocular sporangia.
The plurilocular sporangia produce diploid zoospores that produce diploid sporophytes.
Meiosis takes place in the unilocular sporangia producing haploid zoospores that germinate to produce haploid gametophytes.

Zoospores have tinsel and whip flagella.

Some groups (e.g. Fucus) do not form spores and have a gametic life cycle without alternation of generations.


Phylum Bacillariophyta

An ancient group that appeared in the fossil record about 250 million years ago, and became abundant in the fossil record about 100 million years ago during the Cretaceous.

Diatoms are unicellular or colonial organisms that form an important component of the phytoplankton.

They may count for as much as 25% of the primary production of the earth.

There may be as many as 100,000 species, some of the most diverse and abundant algae on earth.

Diatoms are the primary source of food for many marine animals; they provide essential carbohydrates, fatty acids, sterols, and vitamins to the consumers.

Diatoms live in both freshwater and marine habitats, but are especially abundant in cold marine waters.

Diatoms can also inhabit terrestrial habitats such as damp cliff faces, moist tree trunks and on the surfaces of buildings.

The Walls Of Diatoms Consist Of Two Halves

Cell wall in two parts known as frustules, are made of polymerized silica (SiO2  H2O, 95%) and carbohydrates especially pectin (5%).

The shell is composed of an upper and lower half, with the lower half fitting neatly within the upper, like a Petri dish.

The shell is highly ornamented and perforated with microscopic holes so precisely spaced that they are used commercially to test the resolution of expensive microscope lenses.

These holes connect the living protoplast with the external environment.

Freshwater forms are usually cylindrical in shape: pennate.
Marine species are usually spherical or circular: centric.

Chrysophytes form sometimes “brown blooms” in fresh and salt water.

Diatoms have chlorophyll a and c, and the golden-brown carotenoid fucoxanthin.

Two large chloroplasts are present in pennate diatoms, and many discoid chloroplasts in centric species.

Food is stored in the form of oils and chrysolaminarin, a soluble polysaccharide stored in vacuoles.

Some species are heterotrophic absorbing organic molecules from the environment. Other heterotrophs live symbiotically in foraminiferans.

Fossil frustules make the diatomaceous earths mined for use as filters, insulating material and abrasive polish.

Reproduction In Diatoms Is Mainly Asexual

Reproduction is usually asexual. Changes in the environment or critical small size triggers sexual reproduction.

Yellow-green algae

Some phycologists as a division or class consider the yellow-green algae different from the chrysophytes. Others include them in the chrysophytes.

They have a variety of body shapes: unicellular, filamentous, siphonous or large multicellular body form.
They have chlorophyll c.
Asexual reproduction occurs by isogamy in Vaucheria.
Sexual reproduction consists of biflagellated sperms and a multinucleated egg.
The zygote breaks off and after a period of dormancy germinates forming a new “tube” filled with haploid nuclei.

Division Chrysophyta

Also know as the golden-brown algae.

Chrysophytes are photosynthetic, unicellular colonial organisms; some plasmodia, filamentous and tissue-like forms. About 1000 known species.

Abundant in freshwater and marine environments worldwide.

Chrysophytes contain chlorophylls a and c, and accessory pigment fucoxanthin, a carotenoid.

Cells usually have one or two chloroplasts.

They store food in a vacuole in the form of polysaccharide chrysolaminarin, which is stored in a vacuole usually found in the posterior of the cell.

Some species are heterotrophic ingesting bacteria, algal cells and organic particles.

Some species have cell wall containing cellulose and impregnated with minerals. Others are without walls. One group has silica plates on the cell surface.

Reproduction is mostly asexual by means of zoospores with unequal flagella of similar structure.

Some species can reproduce sexually.

Resting cysts are formed as a result of sexual reproduction at the end of the growing season.

In many ways, golden algae are biochemically and structurally similar to brown algae.


Division Dinophyta

The dinophyta are also known as dinoflagellates.

Molecular evidence indicates that the dinoflagellates are closely related to ciliate protozoa such as Paramecium and Vorticella, and to apicomplexans, a group of parasitic flagellates whose cells contain a non-pigmented plastid, e.g. Plasmodium that causes malaria.

Apicomplexans, dinoflagellates and others form a group called alveolates.

Most are unicellular biflagellates.

About 4000 known species, most of which are members of the marine phytoplankton.

Their flagella beat in two grooves, one encircles the cell and the other extends lengthwise.

The nonmotile dinoflagellates produce flagellated cells that beat in grooves.

Their chromatin is always condensed into chromosomes.

Many are covered with cellulose plates forming a theca.

About half of the dinoflagellates lack photosynthetic apparatus and feed by ingesting food particles or absorbing dissolved organic compounds.

They have chlorophyll a and c, β- and γ-carotenes, a carotenoid called peridinin,  fucoxanthin, a yellow-brown carotenoid, and other xanthins..

Some pigmented flagellates carry out photosynthesis and also feed by absorbing carbon compound through a protruded peduncle; this is called myxotrophy.

When dinoflagellates are symbionts, they lack theca, e.g. zooxanthellae of giant clams, corals, worms, etc.

Dinoflagellates store their food as oils and starch.

Under adverse periods of low nutrient levels, dinoflagellates form resting cysts that are carried by currents.

Reproduction is mostly asexual but sexual reproduction has been observed in some species.

Some species produce bioluminescence and powerful neurotoxins that are accumulated by fish and mollusks.

They have a characteristic type of nuclear and cell division.

http://www.ucmp.berkeley.edu/protista/dinoflagellata.html
http://www.ucl.ac.uk/GeolSci/micropal/dinoflagellate.html
http://www.ucmp.berkeley.edu/protista/alveolates.html
http://www.ucmp.berkeley.edu/protista/apicomplexa.html
http://www.nmnh.si.edu/botany/projects/dinoflag/


Phylum Oomycota

Oomycetes is a distinct heterotrophic group of about 700 species.

Unicellular to highly branched, coenocytic and filamentous forms.

Oomycetes are either saprobes or symbionts.

They inhabit aquatic environments: marine, freshwater or moist terrestrial habitats.

Their cell wall is made of cellulose.

Their food reserve is in the form of glycogen.

Asexual reproduction is by means of motile zoospores, which have the characteristic two flagella of heterokonts.

Sexual reproduction is oogamous: one gamete large and nonmotile, the other small and motile.

Eggs are produced in the oogonia.
The antheridium contains many male nuclei.
The fertilized egg forms a thick-walled zygote called the oospore.
The oospore serves as a resting stage during stressful conditions.

Oomycetes are also called water molds, white rusts and downy mildew.

Water Molds Are Aquatic Oomycetes.

Abundant in fresh water.

Mostly saprophytic and a few parasitic including species that cause diseases to fish and fish eggs.

Species may be homothallic or heterothallic.

Saprolegnia and Achlya are common water molds that reproduce sexually and asexually.

Some Terrestrial Oomycetes Are Important Plant Pathogens

Terrestrial oomycetes produce motile zoospores when water is available.

Terrestrial oomycetes are important plant pathogens; the genus Phytophthora is particularly destructive to plants.

They attack important crops like grapes, pineapples, onions, strawberries, apples, citrus fruits, cacao, etc.

Phytophthora cinnamomi killed millions of avocado trees in southern California, and destroyed thousands of hectares of Eucalyptus timberland in Australia.
Phytophthora ramorum was the cause of the disease called “the sudden oak death.” It attacks many species of oaks and also 26 other species of plants including firs and coastal redwoods.
The great potato famine in Ireland (1846) was caused by the oomycete Phytophthora infestans.
A gene has been found in a species of wild potato, Solanum ulbocastanum, from Mexico, that is resistant to potato blight. The resistant gene has now been inserted in the commercial potatoes, Solanum tuberosum.
The genus Pythium attacks and rot seeds in the wild (preemergence damping-off) and seedling (postemergence damping-off)

Before a diatom can undergo mitosis, it must be living in an environment with sufficient silicon to allow it to construct a new shell.
The diploid protoplast undergoes typical mitosis within the shell, and then the two-shell halves separate.
One protoplast gets the top half, and the other gets the bottom half.
In either case, the protoplast then secretes a new "bottom" to the "Petri dish"(i.e., a new half fitting inside the old half).
This means that after every mitotic division, one of the resulting diatoms is smaller than the original. This can go on for several generations.
Eventually, the protoplast inside the tiny shell undergoes meiosis rather than mitosis. Four haploid gametes are released from the shell, which is discarded.
When two gametes meet and fuse, the resulting diploid cell is called an auxospore (zygote).
The auxospore grows into a normal size of the species.
It then secretes a silica case of the original size...and the cycle begins anew.
Sexual reproduction in centric diatoms is usually oogamous, and in pennate diatoms non-motile isogamous.

Division Euglenophyta.

Mostly unicellular fresh water organisms; one colonial genus.

Molecular evidence indicates that earlier euglenoids were phagocytic.

About one third of euglenoids contain chloroplasts; their chloroplasts resemble those of the green algae and suggest that they were formed from endosymbiotic green algae.

About two thirds of the genera are colorless heterotrophs that depend on particle feeding and absorption of dissolved organic compounds.

They are mostly freshwater organisms living in waters rich in organic compounds and particles.

Cell structure:

Cell membrane, with pellicle immediately beneath the membrane.
Lack cell wall; one genus has a wall-like covering made of manganese and iron minerals.
The pellicle is made of  protein strips arranged in the form of a helix; it may be rigid or flexible.
Single flagellum for movement coming from the reservoir, and a second non-emergent flagellum.
Flagellar swelling and the stigma or eyespot makes the light-sensing system.
Contractile vacuole used in maintaining water balance.
Pyrenoids are found in chloroplasts. It is a region where rubisco is found and paramylon, a polysaccharide is stored.
Pigments present: chlorophylls a and b, carotenoids and several xanthophylls.
Euglenoids grown in absence of light have been known to lose their chloroplasts and become heterotrophic.
Reproduction in euglenoids is asexual, by mitotic cell division. Sexual reproduction is unknown.
The nuclear membrane remains intact during mitosis in a way similar to the fungi.
About 900 species are known.
   
An intact mitotic nuclear envelope is probably a primitive condition. The break down of the nuclear membrane is probably a derived condition that appeared after euglenoids separated from the main stack of protists.

http://botit.botany.wisc.edu/courses/botany_130/Diversity/Euglena/Euglena.html
http://www.life.umd.edu/labs/delwiche/PSlife/lectures/Euglenophyta.html
http://www.csupomona.edu/~jcclark/classes/bot125/resource/survey/euglenophyta.html


ECOLOGY OF THE ALGAE

The Ecology of the algae is not found in your textbook.

Algae are dominant in salt and fresh water habitat.

Everywhere they grow, they play a role similar to that of plants in terrestrial habitats.

Along rocky shores, the large and more complex members of the brown, red and green algae grow forming bands that reflect the ability of the seaweeds to withstand exposure.

Seaweeds in this intertidal zone are exposed twice a day to large fluctuations of humidity, salinity and light, in addition to pounding action of the surf and forceful, abrasive water motions.

Polar seaweeds endure months of darkness under the sea ice.

Seaweeds are the food source to a host of herbivores and parasites.

Large beds of seaweeds provide a safe habitat for many aquatic organisms, e.g. kelp beds off the coast of California.

Plankton refers to all suspended drifting organisms found in all bodies of water.

Planktonic algae and cyanobacteria constitute the phytoplankton found in oceans and fresh water.
Heterotrophic plankton and usually swimming microorganisms are called zooplankton.
Bacteria and some heterotrophic protists form the bacterioplankton.

Phytoplankton is found at the base of the food chain.

Colonial and single-celled chrysophytes, dinoflagellates, diatoms and green algae are the most important organisms at the base of the food chain in freshwater habitats.
Unicellular and colonial haptophytes, dinoflagellates and diatoms are the primary producers of the ocean.

In both marine and freshwater habitats, phytoplankton populations are kept in check by seasonal climatic changes, nutrient limitation and predation.

Phytoplankton is the major producers of oxygen in the atmosphere.

Phytoplankton reduces the amount of CO2 in the atmosphere by fixing it during photosynthesis.

Phytoplankton is important in the deposition of CaCO3 deposits on the ocean floor.

The CO2 fixed by photosynthesis and the calcification process is replaced by atmospheric CO2

Several types of multicellular algae are important members of coral reefs and deposit a substantial amount of calcium compound important in coral building.

Some haptophyte protists produce substantial amounts of sulfur oxides that are added to the atmosphere and reflect sunlight helping to maintain a cooler temperature.

CCRES ALGAE TEAM
part of
Croatian Center of Renewable Energy Sources

nedjelja, 15. srpnja 2012.

CCRES Algae Project Q&A


 CCRES ALGAE
CCRES Algae Project
Q&A


See answers to common questions about growing algae for biofuel production.

    Algae’s potential
    What makes algae a better alternative fuel feedstock than cellulosic feedstocks, such as switchgrass or miscanthus?
    What transportation fuels can algae produce?
    How much fuel can algae produce?
    Where could this type of algae grow?
    What can you do with material derived from algae production not used for fuel?

    Economics
    How much would a gallon of algae-based transportation fuel cost if it were available at a service station today?
    What can accelerate the commercial availability of algae biofuel?

    Environment
    How will algae-based transportation fuels impact greenhouse gas emissions?
    Is the process capable of being replicated at the local level to increase energy efficiency and promote low-energy overhead?

    Security
    Can algae-based fuels be used in developing countries to help them bypass fossil fuel dependence?

CCRES ALGAE

Q: What makes algae a better alternative fuel feedstock than cellulosic feedstocks, such as switchgrass or miscanthus?

    A: Large-scale production of resource-intensive plants, like switchgrass or miscanthus, requires a substantial amount of fertile land, fresh water, and petroleum-based fertilizer to grow. The fuel derived is ethanol, a lower-energy fuel not compatible with the infrastructure now used to transport, refine, and deliver liquid fuels, like gasoline and diesel.

    Conversely, algae can produce hydrocarbons capable of being converted directly into actual gasoline or diesel fuel, which can be transported and delivered to market using the existing refinery infrastructure.


Q: What transportation fuels can algae produce?
    A: Algae produce a variety of fuel and fuel precursor molecules, including triglycerides and fatty acids that can be converted to biodiesel, as well as lipids and isoprenoids that can be directly converted to actual gasoline and traditional diesel fuel. Algae can also be used to produce hydrogen or biomass, which can then be digested into methane.

Q: How much fuel can algae produce?

    A: The United States consumes 140 billion gallons per year of liquid fuel. Algae can produce 3,000 gallons of liquid fuel per acre in a year, so it would take 45 million acres of algae to provide 100% of our liquid fuel requirements.

    For comparison, in 2008 the United States had 90 million acres of corn and 67 million acres of soybeans in production. So growing 45 million acres of algae, while challenging, is certainly possible.


Q: Where could this type of algae grow?

    A: Algae perform best under consistent warm temperatures between 20 and 30 degrees. Climates with plenty of sunshine offer optimal conditions. Ideal Croatian locations include many of the southern and southwestern areas, such as Dalmatia,(including Dalmatian hinterland ).

CCRES ALGAE
 
Q: What can you do with material derived from algae production not used for fuel?

    A: Production of 140 billion gallons of fuel from algae would also yield about 1 trillion pounds of protein. Since algae-produced protein is very high quality, this protein could be used to feed livestock, chicken, or fish. Presently, all livestock in this country consume about 770 billion pounds of protein per year.


Q: How much would a gallon of algae-based transportation fuel cost if it were available at a service station today?

    A: Today, the cost would be relatively expensive. Additional investment in research is needed to further refine and enhance the algae strains that generate such fuels. Also, more infrastructure needs to be developed to achieve the necessary economies of scale that will come with large-scale commercial production. Once overall efficiency increases, the cost of producing a gallon of gasoline from algae will dramatically reduce.


Q: What can accelerate the commercial availability of algae biofuel?

    A: As viable and potentially transformational as algae-based transportation fuels have already proven, we need a much better knowledge base on algae at the microbial level. We also need to build on this platform to develop the tools and train the next generation of scientists that will help usher in the age of accessible, affordable, and sustainable fuels made from algae. That is a central component of the Croatian Center for Algae Biofuels (CCRES Algae Project).

CCRES ALGAE

Q: How will algae-based transportation fuels impact greenhouse gas emissions?

    A: Production of alternative transportation fuels from algae will help reduce the amount of CO2 in the environment. Algae provide a carbon-neutral fuel because they consume more CO2 than is ultimately released into the atmosphere when algae-based fuel burns. The amount of carbon removed from the environment will depend on the number of algae farms built and the efficiency with which algae can be modified to convert CO2 to fuel products. Eventually, algae farms will likely be located adjacent to CO2 producing facilities, like power plants, resulting in potentially significant CO2 sequestration benefits.


Q: Is the process capable of being replicated at the local level to increase energy efficiency and promote low-energy overhead?

    A: Absolutely. There are huge advantages to locating algae farms near urban centers. The algae consume industrial waste and contaminants, which are usually found in higher concentrations near cities. A perfect location is near a power plant, where the algae can consume flue gas and other waste, or near a wastewater treatment plant where the algae could consume significant amounts of nitrates and phosphates from the waste stream. This could result in cleaner effluent discharge, and perhaps eventually create “new” sources of non-potable water for industrial or agricultural use.


Q: Could algae-based fuels be used in developing countries to help them bypass fossil fuel dependence?

    A: Algae-based fuels (and the protein byproducts derived from their production) definitely have the potential to positively impact developing countries. The requirements for farming algae are fairly straightforward and can be done almost anywhere in the world with an adequate supply of sunshine. In Africa, for example, millions of algae acres could be farmed in its less-populated regions, resulting in a reduced dependence on foreign oil and a reliable and sustainable energy supply.
 
CCRES ALGAE PROJECT
part of 
Croatian Center of Renewable Energy Sources (CCRES)

četvrtak, 21. lipnja 2012.

News and Events by CCRES June 21, 2012


 

 

Croatian Center of Renewable Energy Sources

News and Events June 21, 2012


SunShot Initiative Investments and Solar Contest Announced

Photo of two workers installing a solar panel on a rooftop.
DOE's SunShot Initiative has a new competition and investments making it easier and less expensive to deploy solar energy technologies.
Credit: Craig Miller Productions
As part of the Energy Department's SunShot Initiative, the department announced on June 13 a new competition and investments to make it easier and less expensive to deploy solar energy technologies. The department is launching "America's Most Affordable Rooftop Solar" competition to aggressively drive down the cost of rooftop solar energy systems. It also is awarding nearly $8 million to nine small businesses to lower the cost of financing, permitting, and other “soft costs,” which can amount to nearly half the cost of residential solar systems. To spur the use of low-cost residential and small commercial rooftop solar systems across the nation, the department is launching America's Most Affordable Rooftop Solar competition to challenge U.S. teams to quickly lower the cost of installed rooftop photovoltaic (PV) systems. The competition offers a total of $10 million in prize money to the first three U.S. teams that can install 5,000 rooftop solar PV systems at an average price of $2 per watt. By setting an ambitious target, the competition aims to spur creative public-private partnerships, original business models, and innovative approaches to make solar energy affordable for millions of families and businesses. See the America's Most Affordable Rooftop Solar competition Web page.
The Energy Department also awarded up to $8 million to support nine highly innovative startups in four states through the SunShot Incubator program. These companies, in California, Colorado, Massachusetts, and Minnesota, are developing transformative solutions to streamline solar installation processes such as financing, permitting, and inspection. See the list of projectsPDF.
The SunShot Initiative is a collaborative national effort to make solar energy cost competitive with other forms of energy by the end of the decade. Inspired by President Kennedy’s "Moon Shot" program that put the first man on the moon, the SunShot Initiative has created new momentum for the solar industry by highlighting the need for American competitiveness in the clean energy race. See the DOE press release, and the SunShot Initiative website.
 

Energy Department Awards Funding for Concentrating Solar Power

The Energy Department announced on June 13 its new investments in 21 projects designed to further advance cutting-edge concentrating solar power (CSP) technologies. The $56 million in awards span three years, subject to congressional appropriations, and cover 13 states: Arizona, California, Colorado, Illinois, Massachusetts, Minnesota, New Hampshire, New Mexico, Oregon, Pennsylvania, Texas, Vermont, and Washington. As part of the planned three-year initiative, Congress appropriated an initial $16.3 million in fiscal year 2011. The Energy Department plans to made additional requests totaling $39.7 million in fiscal years 2013 and 2014 to support these CSP projects.
The research projects—conducted in partnership with private industry, national laboratories, and universities—support the Energy Department's SunShot Initiative, a collaborative national effort to make solar power cost-competitive with traditional energy sources by the end of the decade. For example, DOE's Sandia National Laboratories will develop a falling particle receiver and heat exchanger system to increase efficiency and lower costs.
The awards will help speed innovations in new components to lower costs, increase operating temperatures, and improve the efficiency of CSP systems. The 3-year applied research projects will focus on achieving dramatic improvements in CSP performance while driving progress toward the SunShot goal of 75% cost reduction. CSP technologies use mirrors to reflect and concentrate sunlight to produce heat, which is then used to produce electricity. CSP systems are distinguished from other solar energy technologies by their ability to store energy as heat so that consumer demand can be met even when the sun is not shining, including during the night. See the DOE press release, the complete list of awardsPDF, and the SunShot Initiative website.
 

Six New Partners Join the Better Buildings Challenge

The Obama Administration announced on June 14 that six major U.S. companies are joining the Better Buildings Challenge, which encourages private sector leaders across the country to commit to reducing the energy use in their facilities by at least 20% by 2020. Starbucks Coffee Company, Staples, and the J.R. Simplot Company will upgrade more than 50 million square feet of combined commercial building space, including 15 manufacturing facilities. Financial allies Samas Capital and Greenwood Energy will make $200 million in financing available for energy efficiency upgrades through this national leadership initiative. And utility partner Pacific Gas and Electric has committed to offering expanded energy efficiency programs for its commercial customers, who are responsible for 30 million square feet of commercial building space.
The Better Buildings Challenge is part of a comprehensive strategy to improve the competitiveness of U.S. industry and business by helping companies save money by and reducing energy waste in commercial and industrial buildings. Under the challenge, private sector CEOs, university presidents, and state and local leaders commit to taking aggressive steps to reducing energy use in their facilities and sharing data and best practices with others around the country. With the addition of today's partners and allies, nearly 70 organizations have now joined the Better Buildings Challenge. Together, these organizations account for more than 1.7 billion square feet of building space, including more than 300 manufacturing plants, and they have committed almost $2 billion to support energy efficiency improvements nationwide. See the DOE press release and the Better Buildings Challenge website.
 

Northwestern University Wins Clean Energy Business Plan Competition

The Energy Department announced on June 14 that NuMat Technologies from Northwestern University has won the first DOE National Clean Energy Business Plan Competition. The other finalists included teams from the University of Utah, University of Central Florida, Massachusetts Institute of Technology, Stanford University, and Columbia University. The competition aims to inspire university teams across the country and promote entrepreneurship in clean energy technologies that will boost American competitiveness, bringing cutting-edge clean energy solutions to the market and strengthening our economic prosperity.
NuMat Technologies presented a plan to commercialize a nanomaterial that stores gases at lower pressure, reducing infrastructure costs and increasing design flexibility. One potential application for this innovation is in designing tanks to store natural gas more efficiently in motor vehicles. NuMat Technologies won based on its commercialization idea, go-to market strategy, team plan, environmental benefits, and potential impact on America’s clean energy economy. As the winning team, Northwestern University was awarded $180,000, which includes seed money for their business plan and additional prizes from sponsors, including technical, design, and legal assistance.
Six teams were invited to present their business ideas to a group of judges from industry and academia after successfully winning at regional level competitions earlier this year. Each team created a business plan around a promising clean energy technology they identified from a university or national lab. The plans detailed how they could bring that technology to market, including financing, product design, scaling up production, and marketing. Funded through DOE’s Office of Energy Efficiency and Renewable Energy, the university-led competition supports the next generation of energy leaders, who will boost American competitiveness. See the DOE press release.
 

New Centers for Building Operations Excellence Named

The Energy Department and the U.S. Department of Commerce on June 19 announced selections for three Centers for Building Operations Excellence that will receive a total of $1.3 million. The centers will create and deploy programs aimed at training and expanding current and incoming building operators. The Centers are part of the Obama Administration’s Better Buildings Initiative, which is working to improve the energy efficiency of America’s commercial buildings 20% by 2020 and potentially reduce business’ energy bills by approximately $40 billion yearly.
The three Centers for Building Operations Excellence will work with universities, local community and technical colleges, trade associations, and the Energy Department’s national laboratories to build training programs that provide commercial building professionals with the critical skills they need to optimize building efficiency. The DOE and Commerce’s National Institute of Standards and Technologies’ Manufacturing Extension Partnership are jointly funding the centers. The centers, chosen through a competitive grants process, utilize multi-organization partnerships and support from local and state governments. The centers are: The Corporation for Manufacturing Excellence in California, partnering with Laney College and the International Union of Operating Engineers Local 39; the Delaware Valley Industrial Resource Center in Pennsylvania, partnering with Pennsylvania State University, Pennsylvania College of Technology, and Drexel University; and the New York State Department of Economic Development in New York, partnering with City University of New York and Rochester Institute of Technology. See the DOE press release and the Better Buildings Initiative website.
 

CROATIAN CENTER of RENEWABLE ENERGY SOURCES (CCRES)

  special thanks to U.S. Department of Energy | USA.gov 


Reports: $257 Billion Invested Globally in Renewable Energy in 2011

Total investment in renewable power and fuels last year increased by 17% to a record $257 billion, according to two new reports on renewable energy trends by the United Nations Environment Programme (UNEP) and the Renewable Energy Policy Network for the 21st Century (REN21). The Global Trends in Renewable Energy Investment 2012 is the fifth edition of the UNEP report. It is based on data from Bloomberg New Energy Finance. Among the highlights is the fact that solar power generation passed wind power to become the renewable energy technology of choice for global investors in 2011. See the Global Trends in Renewable Energy Investment 2012 reportPDF.
According to the REN21 Renewables 2012 Global Status Report, renewables continued to grow strongly in 2011 in all end-use sectors: power, heating and cooling, and transportation. Renewable sources have grown to supply 16.7% of global energy consumption. Of that, the share provided by traditional biomass has declined slightly while the share sourced from modern renewable technologies has risen. See the REN21 Renewables 2012 Global Status reportPDF.
In 2011, the United States closed the gap with China at the top of the renewables investment rankings. U.S. investments grew 57% to $51 billion. China, which has led the world for two years, recorded renewable energy investment of $52 billion, up 17%. The top seven countries for renewable electricity capacity excluding large hydropower—China, the United States, Germany, Spain, Italy, India, and Japan—accounted for about 70% of total non-hydro renewable capacity worldwide. By the end of 2011, total renewable power capacity worldwide exceeded 1,360 gigawatts (GW), up 8% over 2010; renewables comprised more than 25% of total global power-generating capacity (estimated at 5,360 GW in 2011) and supplied an estimated 20.3% of global electricity. See the UNEP press release.

Croatian Center of Renewable Energy Sources (CCRES)

srijeda, 2. svibnja 2012.

CCRES - ALTERNATIVE ENERGY

 

CROATIAN CENTER of RENEWABLE ENERGY SOURCES

 (CCRES)

Alternative Energy
 
Energy has become integral parts of our day-to-day lives. Energy is required to produce electricity for domestic and industrial applications. We need energy to drive our vehicles, to run the machines, keep our houses cool and hot, run the computers and mobiles, and for a number of other purposes.

Comparison of Traditional and Alternative Energy Sources:

Traditionally we have been using fossil fuels for production of electric power and driving our vehicles. The fuels used for the generation of electric power are fossil fuels like coal and oil, and nuclear fuels like uranium. The fuels used commonly for running the vehicles are crude oils like gasoline and diesel. Alternative energy refers to the energy that is not dependent on fossil fuels, crude oil and nuclear fuels. Alternative energy, also called as renewable energy, is obtained from various sources like radiations of the sun (solar energy), wind, water, geothermal heat and tides in the oceans. Burning of fossil fuels is one of the major causes of environmental pollution and greenhouse effect. They release lots of carbon dioxide and particulate matter. The alternative or renewable energy is considered to be the clean energy since extracting energy from its sources does not produce any pollution.

The sources of energy like fossil fuels, crude oil and nuclear fuels are also called as non-renewable sources of energy since their deposits are reducing in the nature as they are being used extensively throughout the world. Fuels like coal, natural gas and oil took millions of years to develop but once used they cannot be replaced immediately. The alternative energy on the other hand is available in abundance from various sources and they get replaced easily immediately or within short period of time.

Alternative sources of energy provide unending supply of energy. For instance the solar energy from the sun will be available for unlimited period of time till the sun keeps shining. Solar energy can be collected by the collectors and it can be used for a number of applications like cooking food, heating water, generating electricity, running the vehicles etc. Similarly, the wind will keep on blowing on the surface of the earth tills its atmosphere is in place so it can be utilized for unlimited period of time. The ability of the wind to produce motion can be utilized to run the fans of the windmill and produce electricity from them.

The tidal energy is obtained from waves of the oceans having huge quantity of water that would last forever. One of the important sources of alternative energy is hydro-power used for the generation of electricity in hydroelectric power plants. Throughout the world, the hydroelectric power plants are one of the major sources for the generation of electricity. In these plants the flow of river is blocked at certain places and water is allowed to be collected at large height in the dam. The rivers have been flowing since thousands of years and continue to exist for unlimited period of time as they are replenished by rain water from time-to-time.

Geothermal energy is obtained from the lower layers of the earth usually for producing the heating effect. Once the energy is obtained from the earth, it is replaced immediately naturally and it can be used for ending period of time interval.

Another important source of alternative energy is the biomass like waste wood, leaves of the plants, broken branches and twigs of the trees, agricultural wastes, garbage, human wastes etc. The fuels obtained from biomass are called bio-fuels. Some of the common bio-fuels are ethanol, biodiesel, and natural gas. Biodiesel is a type of alternative fuel used for running of the vehicles. It is made from renewable energy sources like plant and animal fats. Biodiesel is not a petroleum fuel, but it can be easily blended with petroleum fuel diesel in various proportions.

All the above alternative sources of energy are expected to last for long intervals of time line. While the supply of coal, oil and natural gas is expected to reduce and stop in the future, the supply of energy from sources like sun, wind, water, earth, and biomass is expected to last forever.

Consumption of alternative energy in US has been increasing over the years. In the year 2009 the consumption of alternative energy in US was 7.7 quadrillion Btu, which was 8% of all the energy used in the whole nation. Half of the alternative energy was used for producing electricity, while 10% of the total electricity produced was from alternative energy sources. Besides this alternative energy sources were also used for production of heat and steam. Alternative energy was also used for transportation, and to provide heat for homes and businesses.

Alternative energy sources reduce the pressure on fossil fuels and also help keep environment clean. The only major problem is that alternative energy is expensive compared to the fossil fuels mainly because they are located in remote places and its difficult to bring them to the main grid. Some of the sources like wind and solar are not uniform during various periods of the day and the year. However, their demand has been increasing and various technologies are being developed to utilize alternative energy sources more efficiently.

CCRES 
special thanks to   
Escapeartist, Inc

 CROATIAN CENTER of RENEWABLE ENERGY SOURCES 
(CCRES)