Prikazani su postovi s oznakom CCRES - BIODIESEL. Prikaži sve postove
Prikazani su postovi s oznakom CCRES - BIODIESEL. Prikaži sve postove

petak, 2. svibnja 2014.

The Effects of Astaxanthin - Gastric Health

 

 

 

Astaxanthin for Dyspepsia and Helicobacter pylori

Helicobacter pylori 

Dyspepsia is the general term given to a variety of digestive problems localized in the upper abdominal region. Typical symptoms for example include stomach pain, gas, acid-reflux or bloating. Dyspepsia is like the stomach version of the irritable bowel syndrome and its symptoms may appear at any age or to any gender. The medical approach to dyspepsia involves looking for treatable causes and addressing them if identified. Failing that, doctors suggest treatments by trial-and-error. The problem associated with this non-standardized approach involves drugs that may not work, may cause side effects and exacerbate the patient’s condition brought on by stressful attempts to cure symptoms.
To understand the benefits of astaxanthin in dyspepsia, it is necessary to categorize specific types; most common forms are either non-ulcer dyspepsia or gastric dyspepsia. Non-ulcer dyspepsia problems usually do not have an identifiable cause, but fortunately, for most cases it is non-disease related and therefore temporary. On the other hand, gastric type dyspepsia is more severe and linked to identifiable causes. For example, the bacterial infection of Helicobacter pylori is a commonly known cause. Pathological symptoms of H. pylori infection include high levels of oxidative stress and inflammation in the stomach lining and symptoms like gastric pain and acid reflux., H. pylori can contribute to mild and severe kinds of symptoms, but on the other hand, people who are H. pylori positive can remain asymptomatic whereas others may develop into clinical problems. It is still unclear what triggers the severe form of infection and how the bacteria is passed on, but scientists suggested using strong antioxidants like astaxanthin for therapy and better long term protection.

Helicobacter pylori in Gastric Dyspepsia

This Gram-negative bacterium is present in approximately half of the world population, and typically resides in the human gastric epithelium (stomach lining). H. pylori infection is generally acknowledged as the main cause for type B gastritis, peptic ulcer disease and gastric cancer. The pathogenesis of this infection is partly due to the immunological response as shown by Bennedsen et al., (1999). Astaxanthin (200 mg/kg body weight) fed to H. pylori infected mice for 10 days exhibited signs of improved immune system. Normally, the T-helper1 (Th1) response exacerbates inflammation and epithelial cell damage due to infection, but the astaxanthin treated mice responded with a mixed Th1/Th2-response (Figure 1), which lowered gastric inflammation (Figure 2) and bacterial loads (Figure 3). Furthermore, the findings by Wang et al., (2000) also supported the idea that a diet supplemented with astaxanthin or vitamin C in mice lowered inflammation after 10-days of treatment (in vivo), and also inhibit H. pylori growth (in vitro). The mice treated with astaxanthin (10 mg/kg body weight) had the same effect as vitamin C (400 mg/Kg) which significantly lowered gastric inflammation and lipid peroxidation (Figure 4) compared to infected control mice; which continued to develop severe gastritis.

Figure 1. IL-4 release of splenocytes after restimulation with H. pylori sonicate (Bennedsen et al., 1999) Figure 1. IL-4 release of splenocytes after restimulation with H. pylori sonicate (Bennedsen <em>et al.</em>, 1999)  
Astaxanthin improved the cytokine IL-4 response (Th2 T-cell) to the presence of H. pylori (in vitro).
Figure 2. Gastric inflammation (antrum + corpus) (Bennedsen et al., 1999)
  Figure 2. Gastric inflammation (antrum + corpus) (Bennedsen <em>et al.</em>, 1999)  
Astaxanthin reduced gastric inflammation in Helicobacter pylori infected mice.
Figure 3. Bacterial load (antrum + corpus) (Bennedsen et al., 1999) Figure 3. Bacterial load (antrum + corpus) (Bennedsen <em>et al.</em>, 1999)  
Astaxanthin reduced Helicobacter pylori colonization of the stomach of infected mice.
Figure 4. Amount of lipid peroxidation products (MDA and 4-hydroxyalkenals) during H. pylori infection (Wang et al., 2000) 
Figure 4. Amount of lipid peroxidation products (MDA and 4-hydroxyalkenals) during H. pylori infection (Wang <em>et al.</em>, 2000)  
Lipid peroxidation levels lowered in H. pylori infected mice after treatment with astaxanthin or Vitamin C.
The success of astaxanthin in dyspepsia animal models prompted further prospective human studies. In 1999, the first clinical study performed in collaboration with the Centre for Digestive Diseases, Australia, involved 10 H. pylori positive subjects (non-ulcer) with typical dyspeptic symptoms such as heartburn and gastric pain, were each treated with 40 mg daily dose of astaxanthin for 21 days. 10 clinical parameters assessed the efficacy before and after the treatment period. The gastric pain, heartburn and total clinical symptoms results showed a significant drop of 66%, 78% and 52% drop respectively (Figure 5). Furthermore, follow-up checks 27 days after the cessation of astaxanthin intake (a total of 49 days from day 0), showed that the dyspeptic symptoms remained low (Lignell et al., 1999). In summary, astaxanthin effectively controlled the dyspepsia symptoms, and H. pylori eradication trend was observed, but not significant.

Figure 5. Total Clinical Symptoms (Lignell et al., 1999) Figure 5. Total Clinical Symptoms (Lignell <em>et al.</em>, 1999)  
Astaxanthin reduced total grade of clinical symptoms in H. pylori positive non-ulcer dyspeptic subjects after 21 days. Low symptom score continued even up to 28 days after treatment ceased.

Reflux in Non-Ulcer Dyspepsia

Helicobacter pylori 

Approximately one in four people experience dyspepsia at some time that are linked to common causes such as food types, stress, stomach ulcers, or acid reflux (stomach acid backs-up into the esophagus). If the exact causes of non-ulcer dyspepsia are unknown, there are no standardized treatments that exist to effectively treat the patient. The usual procedure involves the problematic remedies of acid blocking medicines, painkillers or antibiotics. However, drug treatment faces problems with increasing antibiotic resistant bacteria and carries increased risk of damage to the stomach. Therefore, clinically proven non-drug treatments are becoming more attractive to physicians and patients.
Astaxanthin efficacy in non-ulcer dyspepsia was demonstrated in a randomized double-blind placebo controlled study involving 131 patients complaining of non-ulcer dyspepsia. This collaborative trial conducted by the Kaunas University Hospital, Lithuania; Rigshospitalet, Copenhagen; University of Lund and the Karolinska Institute, Sweden demonstrated that 40 mg astaxanthin treatment up to 4 weeks significantly reduced reflux compared to the 16 mg.

Figure 6. Reflux-syndrome 
 Figure 6. Reflux-syndrome  
Reduced reflux-syndrome score of non-ulcer dyspepsia patients treated with 16 mg and 40 mg astaxanthin.

Outlook

There are considerable overlaps in a number of gastrointestinal disorders that may be treatable with conventional medicine, but what if it does not work? In that case, astaxanthin may be useful, particularly against H. pylori positive gastritis and non-ulcer dyspepsia acid reflux. The mechanisms of action include the following: decreasing oxidative stress by astaxanthin’s potent antioxidant property; controlling bacterial infection by shifting the immune response; and alleviating dyspeptic symptoms by retarding inflammation. Furthermore, these results infer that acid reflux in connection with either H. pylori positive or negative conditions can still expect improvements with astaxanthin.

References

  1. Bennedsen M, Wang X, Willen R. Treatment of H. pylori infected mice with antioxidant astaxanthin reduces gastric inflammation, bacterial load and modulates cytokine release by splenocytes. Immunol Lett. 1999. 70: 185-189.
  2. Kupcinskas L, Lafolie P, Lignell A, Kiudelis G, Jonaitis L, Adamonis K, Andersen LP, Wadstrom T. Efficacy of the natural antioxidant astaxanthin in the treatment of functional dyspepsia in patients with or without Helicobacter pylori infection: A prospective, randomized, double blind, and placebo-controlled study. Phytomedicine 2008. 15: 391–399.
  3. Lignell A, Surace R, Bottiger P, Borody TJ. Symptom improvement in Helicobacter pylori positive non-ulcer dyspeptic patient after treatment with the carotenoid astaxanthin. In: 12th International Carotenoid Symposium, Cairns, Australia, 18-23 July 1999.
  4. Wang X, Willen R, Wadstrom T. Astaxanthin rich algal meal and vitamin C inhibit Helicobacter pylori infection in BALB/cA mice. Antimicrob Agents Chemother. 2000. 44: 2452-2457.


CCRES special thanks to 
  Mr. Mitsunori Nishida, 
 
President of Corporate Fuji Chemical Industry Co., Ltd.

Croatian Center of Renewable Energy Sources (CCRES)

srijeda, 30. travnja 2014.

The Effects of Astaxanthin - Hypertension

 

 

 

 

Astaxanthin Reduces Hypertension

Astaxanthin Reduces Hypertension 

Epidemiological and clinical data suggest that dietary carotenoids such as astaxanthin may protect against cardiovascular disease (CVD) which includes hypertension. This condition is associated with blood vessel dysfunction, altered contractility and tone; mediated by relaxant (nitric oxide NO; prostacyclin) and constrictor factors (thromboxane; endothelin) in the blood. Furthermore, blood flow properties serve an important role in the pathological complications seen in atherosclerosis and coronary heart disease. Research presented here suggests that astaxanthin may be useful as part of an antioxidant therapy to alleviate hypertension (Figure 1).

Figure 1. Mechanisms by which Astaxanthin reduces hypertension Figure 1. Mechanisms by which Astaxanthin reduces hypertension

Reduction of Arterial Blood Pressure

An early study involving a composition of carotenoids have been used against hypertension or high blood pressure (BP), but Hussein et al., (2005a) published the first study involving astaxanthin with spontaneously hypertensive rats (SHR) and stroke prone (SHR-SP). This study investigated the effects of astaxanthin on the aortic vessel blood pressure (BP) in relation to endothelium and nitric oxide (NO) to elucidate mechanism and response.
Figure 2. Astaxanthin (5mg/kg/day) treated SHR reduced mean blood pressure. Hussein et al., 2005b. Figure 2. Astaxanthin (5mg/kg/day) treated SHR reduced mean blood pressure. Hussein <em>et al.</em>, 2005b.
In a double blind controlled placebo study conducted in Japan, 20 healthy postmenopausal women, who ingested 12 mg everyday for 4 weeks, reduced their systolic and diastolic blood pressure by 7% and 4%
In another study, 15 healthy subjects, between 27-50 of age, who received 9mg/day of astaxanthin for 12 weeks had their diastolic blood pressure decreased by 6% (Matsuyama et al., 2010).
A series of animal studies have largely replicated the effects of astaxanthin found in human studies (Ruiz et al., 2010; Preuss, 2009; Preuss, 2011).

Figure 3. Open Label Clinical Study. 73 subjects between 20-60 years of age received 4mg of astaxanthin x day for 4 weeks (Sato et al 2009) Figure 3. Open Label Clinical Study. 73 subjects between 20-60 years of age received 4mg of astaxanthin x day for 4 weeks (Sato et al 2009)

Mechanism of Anti-hypertension

The antihypertensive mechanism may be in part explained by the changes of vascular reactivity and hemorheology.
Microchannel Array Flow Analysis (MC-FAN) measured a significant increase of blood flow of 11% (Figure 3) in the astaxanthin treated group.


Figure 4. Open Label Clinical Study 35 healthy postmenopausal women (BMI 22.1) were included in the study, treated with astaxanthin daily dose of 12 mg for 8 weeks Figure 4. Open Label Clinical Study 35 healthy postmenopausal women (BMI 22.1) were included in the study, treated with astaxanthin daily dose of 12 mg for 8 weeks
In a human study conducted by Iwabayashi et.al., (2009) , 20 healthy women who ingested 6mg / day for 8 weeks increased ABI (ankle brachial pressure index) by 4% suggesting a reduction of lower limb vascular resistance. Another human study also prove that oral administration of 6 mg/day of astaxanthin for 10 days enhanced capillary blood flow by 10%.
Figure 5. Astaxanthin (6 mg/day) supplementation for 10 days improves blood flow in humans as tested by MC-FAN. Miyawaki et al., 2005. Figure 5. Astaxanthin (6 mg/day) supplementation for 10 days improves blood flow in humans as tested by MC-FAN. Miyawaki <em>et al.</em>, 2005.
Figure 6. Astaxanthin increases relaxant and reduces constrictor mechanisms to help reduce blood pressure in SHR.
  Figure 6. Astaxanthin increases relaxant and reduces constrictor mechanisms to help reduce blood pressure in SHR.
Indeed, Hussein et al., (2006b) demonstrated that 5 mg/day of astaxanthin for 7 weeks decreased vascular wall thickness by 47%.

Figure 7. A) Coronary artery wall is thinner and lumen is wider in astaxanthin treated rats. B) Elastin bands are also fewer in number and less elastic compared to the control groups which also show intense and branched elastine feature (C). Hussein et al., (2006a). Figure 7. A) Coronary artery wall is thinner and lumen is wider in astaxanthin treated rats. B) Elastin bands are also fewer in number and less elastic compared to the control groups which also show intense and branched elastine feature (C). Hussein <em>et al.</em>, (2006a).

Outlook

The oxidative status and physiological condition during hypertension are successfully mediated by astaxanthin. The mechanisms of action include improved blood rheology, modulation of constrictor and dilator factors and blood vessel remodelling. Although, these findings are based on spontaneous hypertensive rat models, these serve as a solid basis for extending the hypothesis to human clinical trials.

References

  1. Hussein G, Nakamura M, Zhao Q, Iguchi T, Goto H, Sankawa U, Watanabe H. (2005)a. Antihypertensive and neuroprotective effects of astaxanthin in experimental animals. Biol. Pharm. Bull., 28(1):47-52.
  2. Hussein G, Goto H, Oda S, Iguchi T, Sankawa U, Matsumoto K, Watanabe H. (2005)b. Antihypertensive potential and mechanism of action of astaxanthin II. Vascular reactivity and hemorheology in spontaneously hypertensive rats. Biol. Pharm. Bull., 28(6):967-971.
  3. Hussein G, Goto H, Oda S, Sankawa U, Matsumoto K, Watanabe H. (2006)a. Antihypertensive potential and mechanism of action of astaxanthin: III. Antioxidant and histopathological effects in spontaneously hypertensive rats. Biol. Pharm. Bull. 29(4):684-688.
  4. Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H. (2006)b. Astaxanthin, a Carotenoid with Potential in Human Health and Nutrition. J. Nat. Prod., 69(3):443 – 449.
  5. Iwabayashi M, Fujioka N, Nomoto K, Miyazaki R, Takahashi H, Hibino S, Takahashi Y, Nishikawa K, Nishida M, Yonei Y. (2009). Efficacy and safety of eight-week treatment with astaxanthin in individuals screened for increased oxidative stress burden. J. Anti Aging Med., 6 (4):15-21.
  6. Kudo Y, Nakajima R, Matsumoto N. (2002). Effects of astaxanthin on brain damages due to ischemia. Carotenoid Science (5):25.
  7. Li W, Hellsten A, Jacobsson LS, Blomqvist HM, Olsson AG, Yuan XM. (2004). Alpha-tocopherol and astaxanthin decrease macrophage infiltration, apoptosis and vulnerability in atheroma of hyperlipidaemic rabbits. J. Mol. Cell. Cardio., 37(5):969-978.
  8. Miyawaki H, Takahashi J, Tsukahara H, Takehara I. (2005). Effects of astaxanthin on human blood rheology. J. Clin. Thera. Med., 21(4):421-429.
  9. Preuss H, Echard B, Bagchi D, Perricone VN, Yamashita E. (2009). Astaxanthin lowers blood pressure and lessens the activity of the renin-angiotensin system in Zucker Fatty Rats. J. Funct. Foods, I:13-22.

CCRES special thanks to 

  Mr. Mitsunori Nishida, 

 
President of Corporate Fuji Chemical Industry Co., Ltd.

Croatian Center of Renewable Energy Sources (CCRES) 

nedjelja, 19. kolovoza 2012.

THIRD GENERATION BIOFUELS FROM ALGAE



THIRD GENERATION BIOFUELS FROM ALGAE
Croatian Center of Renewable Energy Sources (CCRES) have a new technology with major potential to contribute to the fight against climate change.As with all new technologies, careful consideration of potential impacts on the environment and human health is important.
The international community has acknowledges that global warming needs to be kept below 2˙C (3,6˙F) compared with the pre industrial temperature in order to prevent dangerous climate change.This will require significant reductions in the world´s emissions of CO2 and other greenhouse gases (GHG) over the coming decades.CCRES have one of the technologies that can help to achieve this.
The EU, which is responsible for around 11% of global GHG emissions today, has put in place binding legislation to reduce its emissions to 20% below 1990 levels by 2020.Europe is also offering to scale up this reduction to 30% if other major economies in the developed and developing world´s agree to undertake their fair share of a global reduction effort.
This is why the EU must support alternative fuels, in particular biofuels, with the triple objective of reducing greenhouse gas emissions, diversifying fuel supply and developing longterm replacements for fossil fuels.
Third generation biofuels from algae will have an important role to play as soon as they are ready for the market. They should be more sustainable, boasting both a lower enviromental impact and lower costs.Biofuels must become a commercial and competitive product using the broadest range possible of raw materials from both Nord and South Europe.
Biofuels from algae have a big role to reduce CO2 emmisions.
The sustainability of algae biofuels and their potential impacts on other sectors, including land use, are will remain critical issues.Algae biofuels provide an important contribution towards climate change mitigation and security of supply.They are only part of the solution, and must be considered in a wider context, in which efforts are also being made to reduce transport demand, improve transport efficiency and encourage the use of environmentally friendly modes of transport.
CCRES INTERNATIONAL COOPERATION
CCRES international cooperation in algae biofuels research has a number of benefits for all involved:
  • working together enhances synergies between the different partners
  • partners can pool financial resources, share risk and set common standards for large or relatively risky research and development project
  • it speeds up the development of the clean technologies we need if we are to tackle our energy related problems
  • by linking up their efforts, partners can support a wider range of energy technologies and reduce the costs of key technologies
  • networking allows partners to better coordinate their energy research agendas
Over the years, CCRES has build up strong and lasting research cooperation partnerships on specific energy topics with partner organizations.
Zeljko Serdar
President & CEO
Croatian Center of Renewable Energy Sources (CCRES)

nedjelja, 15. srpnja 2012.

CCRES Algae Project Q&A


 CCRES ALGAE
CCRES Algae Project
Q&A


See answers to common questions about growing algae for biofuel production.

    Algae’s potential
    What makes algae a better alternative fuel feedstock than cellulosic feedstocks, such as switchgrass or miscanthus?
    What transportation fuels can algae produce?
    How much fuel can algae produce?
    Where could this type of algae grow?
    What can you do with material derived from algae production not used for fuel?

    Economics
    How much would a gallon of algae-based transportation fuel cost if it were available at a service station today?
    What can accelerate the commercial availability of algae biofuel?

    Environment
    How will algae-based transportation fuels impact greenhouse gas emissions?
    Is the process capable of being replicated at the local level to increase energy efficiency and promote low-energy overhead?

    Security
    Can algae-based fuels be used in developing countries to help them bypass fossil fuel dependence?

CCRES ALGAE

Q: What makes algae a better alternative fuel feedstock than cellulosic feedstocks, such as switchgrass or miscanthus?

    A: Large-scale production of resource-intensive plants, like switchgrass or miscanthus, requires a substantial amount of fertile land, fresh water, and petroleum-based fertilizer to grow. The fuel derived is ethanol, a lower-energy fuel not compatible with the infrastructure now used to transport, refine, and deliver liquid fuels, like gasoline and diesel.

    Conversely, algae can produce hydrocarbons capable of being converted directly into actual gasoline or diesel fuel, which can be transported and delivered to market using the existing refinery infrastructure.


Q: What transportation fuels can algae produce?
    A: Algae produce a variety of fuel and fuel precursor molecules, including triglycerides and fatty acids that can be converted to biodiesel, as well as lipids and isoprenoids that can be directly converted to actual gasoline and traditional diesel fuel. Algae can also be used to produce hydrogen or biomass, which can then be digested into methane.

Q: How much fuel can algae produce?

    A: The United States consumes 140 billion gallons per year of liquid fuel. Algae can produce 3,000 gallons of liquid fuel per acre in a year, so it would take 45 million acres of algae to provide 100% of our liquid fuel requirements.

    For comparison, in 2008 the United States had 90 million acres of corn and 67 million acres of soybeans in production. So growing 45 million acres of algae, while challenging, is certainly possible.


Q: Where could this type of algae grow?

    A: Algae perform best under consistent warm temperatures between 20 and 30 degrees. Climates with plenty of sunshine offer optimal conditions. Ideal Croatian locations include many of the southern and southwestern areas, such as Dalmatia,(including Dalmatian hinterland ).

CCRES ALGAE
 
Q: What can you do with material derived from algae production not used for fuel?

    A: Production of 140 billion gallons of fuel from algae would also yield about 1 trillion pounds of protein. Since algae-produced protein is very high quality, this protein could be used to feed livestock, chicken, or fish. Presently, all livestock in this country consume about 770 billion pounds of protein per year.


Q: How much would a gallon of algae-based transportation fuel cost if it were available at a service station today?

    A: Today, the cost would be relatively expensive. Additional investment in research is needed to further refine and enhance the algae strains that generate such fuels. Also, more infrastructure needs to be developed to achieve the necessary economies of scale that will come with large-scale commercial production. Once overall efficiency increases, the cost of producing a gallon of gasoline from algae will dramatically reduce.


Q: What can accelerate the commercial availability of algae biofuel?

    A: As viable and potentially transformational as algae-based transportation fuels have already proven, we need a much better knowledge base on algae at the microbial level. We also need to build on this platform to develop the tools and train the next generation of scientists that will help usher in the age of accessible, affordable, and sustainable fuels made from algae. That is a central component of the Croatian Center for Algae Biofuels (CCRES Algae Project).

CCRES ALGAE

Q: How will algae-based transportation fuels impact greenhouse gas emissions?

    A: Production of alternative transportation fuels from algae will help reduce the amount of CO2 in the environment. Algae provide a carbon-neutral fuel because they consume more CO2 than is ultimately released into the atmosphere when algae-based fuel burns. The amount of carbon removed from the environment will depend on the number of algae farms built and the efficiency with which algae can be modified to convert CO2 to fuel products. Eventually, algae farms will likely be located adjacent to CO2 producing facilities, like power plants, resulting in potentially significant CO2 sequestration benefits.


Q: Is the process capable of being replicated at the local level to increase energy efficiency and promote low-energy overhead?

    A: Absolutely. There are huge advantages to locating algae farms near urban centers. The algae consume industrial waste and contaminants, which are usually found in higher concentrations near cities. A perfect location is near a power plant, where the algae can consume flue gas and other waste, or near a wastewater treatment plant where the algae could consume significant amounts of nitrates and phosphates from the waste stream. This could result in cleaner effluent discharge, and perhaps eventually create “new” sources of non-potable water for industrial or agricultural use.


Q: Could algae-based fuels be used in developing countries to help them bypass fossil fuel dependence?

    A: Algae-based fuels (and the protein byproducts derived from their production) definitely have the potential to positively impact developing countries. The requirements for farming algae are fairly straightforward and can be done almost anywhere in the world with an adequate supply of sunshine. In Africa, for example, millions of algae acres could be farmed in its less-populated regions, resulting in a reduced dependence on foreign oil and a reliable and sustainable energy supply.
 
CCRES ALGAE PROJECT
part of 
Croatian Center of Renewable Energy Sources (CCRES)

srijeda, 27. lipnja 2012.

Carbon capture and consumption

 

Could it Eliminate the Need for Wastewater Aeration?

Algal blooms have always proved a challenge for the water industry. Yet could this organic matter,with the help of wastewater nutrients, be turned into a biofuel and help alleviate fossil fuel shortages? Tom Freyberg investigates the European funded All-Gas project.
First generation biofuels from crops never really bloomed into a fruitful harvest. Opponents criticized using up valuable land to grow crops and fuel the cars of the rich, instead of filling the stomachs of the poor. Second generation biofuels – made from biomass - have proved a lot harder to extract the required fuel and fully crack.
And then along came algae. Unlike first generation biofuels, algae can be grown using land and water not suitable for plant and food production.
Consuming solar energy and reproducing itself, algae generates a type of oil that has a similar molecular structure to petroleum products produced today. As if this wasn't enough – algae growth also consumes carbon dioxide, a known major greenhouse gas (GHG).
As a result of the apparent benefits the race is on to commercialize second and now third generation biofuels, in the case of algae. Continents and companies are putting money where their mouths are to find out how what we thought was simply a green weed growing in the sea could be the answer to inevitable fossil fuel shortages.



Algal culture ponds are used to grow and harvest micro-algae using nutrients contained in wastewater

Earlier this year US President Barack Obama announced that the Department of Energy would make $14 million available to support research and development into biofuels from algae. The Department has suggested that up to 17% of the US' imported oil for transportation could be replaced with biofuels derived from the substance.
Meanwhile Europe is going even further and mandating the gradual replacement of fossil fuels to biofuels. An EU Directive stipulates that by 2020 a total of 20% of energy needs should be produced by renewable fuels. A further requirement is that 10% of biofuels need to be met through transport related activities.
Even UK government backed agency the Carbon Trust has forecast that by 2030, algae-based biofuels could replace more than 70 billion litres of fossil fuels used every year around the world in road transportation and aviation.

Nutrients: burden or blessing?

So far, so good. Yet while algae derived biofuels sound like an answer to inevitable fossil fuel shortages, two challenges remain: space and nutrients. The first challenge will be addressed later but on the topic of nutrients, phosphorous and ammonia are required alongside sun light and carbon dioxide to "feed" the algae. And with up to 30% of operating costs at algae farms attributed to buying and adding in such nutrients, it's a notable expense.
It is in response to this particular challenge where the wastewater sector could play its part, with untreated effluent being a known source of phosphorous and other nutrients. An EU funded project aims to bring together the challenge and solution and link the water and biofuel industries together.
The €12 million, five-year project is starting at water management company aqualia's wastewater treatment plant in Chiclana, Southern Spain and is backed by the European Union as part of its FP7 program – supporting energy-related projects - with six partners.
Called All-Gas, which translates into algae in Spanish, the project will see "algal culture ponds" being used to grow micro-algae using nutrients contained in wastewater, such as phosphorous. A 10-hectare site will eventually be needed for the project. Frank Rogalla, head of R&D at aqualia, says nutrients are abundant in wastewater, so it makes sense to incorporate the two industries.
Traditionally aeration processes at wastewater treatment plants are heavy energy users, accounting for up to 30% of a facility's operating costs. In the US, according to the Environmental Protection Agency, drinking water and wastewater systems account for between 3% and 4% of national energy consumption alone.
However, Rogalla later told Water & Wastewater International magazine (WWi) that growing algae with wastewater can eliminate the need for aeration, thus reducing energy use.
He said: "We have converted our treatment to anaeraobic pre-treatment, meaning we will generate biogas from the start instead of destroying organic matter, so no aeration will be needed. From the 0.5 kWh [kilowatt-hour] per m3 which you generally spend for aeration, that will be completely gone. We will have a net output of energy from algae conversion either to oils or to gas. So that's why you get this positive output of 0.4 kWh per m3 of wastewater treated."
Rogalla added: "It will not cost more than traditional wastewater treatment, which costs about 0.2 Euros per cubic metre. We think we will use the same operational costs but instead of consuming energy we will produce additional benefit, meaning we generate about 0.2 Euros per cubic metre in additional profit from the fuel. Our aim is to be cost neutral."
So the question has to be asked of how, technically, can the proposed treatment eliminate the need for wastewater aeration? The answer, as Rogalla later tells WWi, is through the initial conversion to biogas.
Compared to nitrification and dentrification to eliminate nutrients in conventional wastewater treatment, a process Rogalla says consumes about 5 kWh/kg Nitrogen during aeration, All-Gas will use an alternative conversion. Firstly anaerobic pre-treatment will convert most organic matter into biogas (CH4 and CO2). Algae will then take up the nitrogen and phosphorous.


Productive: instead of using traditional nitrification and dentrification processes, organic matter will instead be converted into biogas

As the algae will transform most nutrients into biomass, they will also produce O2 in the process, as CO2 is taken up and oxygen released in their metabolic process. As a result, according to Rogalla, aeration is not necessary. Most organic carbon is transformed into energy (via biogas), nutrients are incorporated into algae, which produce oxygen for any polishing action necessary.


An overview of aqualia's wastewater treatment plant in Chiclana, Southern Spain

"It only seems logical to use the wastewater nutrients to grow algae biomass; on the one hand saving the aeration energy, on the other hand the algae fertilizer and cleaning wastewater without the occurrence of useless sludge, but producing biofuels and added value instead," Rogalla adds.

CROATIAN CENTER of RENEWABLE ENERGY SOURCES (CCRES)

  special thanks to U.S. Department of Energy | USA.gov

  and WaterWorld, Industrial WaterWorld

Space challenges

Addressing the second challenge of space requirements to harness algae ponds, for a commercial scale operation it's estimated that a 10 hectare site is required (roughly 10 football pitches). Yet when compared to the oil yields of other crops, algae still proves favourable.
Data from US-based National Renewable Energy Laboratory (NREL) show that oil yields from soybeans work out at 400 litres/hectare/year, which compares to 6,000 for palm oil and theoretically, a potential 60,000 for microalgae. For barrels/hectare/year, the same comparison yields 2.5 for soybeans, 36 for palm oil and a minimum of 360 for microalgae.
As predictions go, the production of 60,000 litres of biofuel from only one hectare of algae is optimistic compared aqualia's aims for the Europe project. If a target set by the EU is reached, then each hectare should produce 20,000 litres of biodiesel. This, the firm says, compares to 5000 litres of biofuel per hectare per year for biofuels such as alcohol from sugar cane or biodiesel from palm oil.
The Spanish project also hopes to use produced biogas from the anaerobic pre-treatment and raw wastewater organic matter as car fuel, with each hectare touted to treat about 400 m3 per day.
Statistics to one side, the challenge of space remains. Booming urban populations are expanding closer to rural wastewater treatment plants but at the same communities insist on an 'out of sight, out of mind' rule when it comes to infrastructure that treats their waste. Rogalla does not think the land issue could impede the development of algae ponds to the majority of wastewater treatment plants. "Algae ponds of course can be put on marginal lands, or even on rooftops," he adds. "In rural areas extensive oxidation ponds for wastewater treatment are not uncommon, not to mention the often unused land areas as buffer zones around wastewater treatment plants.


Biogas generated from wastewater could mean the 0.5 kWh per m3 usually spent on aeration won't be required

"As we do not claim that all fuel can be made from biofuel on land, but only where possible wastewater should be turned into biofuel (excluding mostly big cities), the land issue seems secondary."

Carbon capture and consumption

One further benefit that has made algae growth attractive compared to other fuels is its consumption of Greenhouse Gases (GHG), namely CO2, in order to grow. While captured carbon consumed by algae will inevitably be released later when used as a fuel in cars, it could still be a step in the right direction in reducing the impact of a world still firmly grasping CO2 emitting fuel sources.
An article entitled Algal Biofuels: The Process from NREL in a Society for Biological Engineering journal suggests that over two billion tons of CO2 could be captured by growing algae on the space equivalent to the entire U.S. soybean crop of 63.3 million acres.
Power plants and cement kilns appear to be an ideal match for algae growth, then. Yet, in order for All-Gas to attract seven million Euros worth of funding for its project, the CO2 had to come from renewable sources. Any fossil fuel burning plants were not permitted, as Denise Green, manager of biofuels across Europe and Africa from Hart Energy Consulting tells WWi.
"This particular call was restricted to projects in which the carbon dioxide supply for the algae cultivation was provided by renewable applications, excluding carbon dioxide from fossil fuel installations," she says.
"However I see no reason why future funding for algae projects could not be provided for research into algae as part of the solution for CO2 capture for zero emission power generation. If there are objections to using algae from fossil fuel installations for transportation fuels, there are other industries for which algae can be used where this may not be an issue."

Project roll out and commercialisation

The project will be implemented in two stages, with a prototype facility being used to confirm the scale of the full-size plant during the first two years. Once the concept has been proven in full-scale ponds, a 10 hectare site will be developed and operated at commercial scale during the next three years.
Rogalla suggests the project could be rolled out among aqualia's existing facilities along the Mediterranean belt, including Italy, Portugal, Egypt and even South America, all of which have "favourable conditions, meaning the climate is advantageous and the land is available".
Clearly, the conversion of algae to fuel is possible and has been demonstrated on a laboratory scale. It could hold the potential to turn a new leaf for biofuels haunted by their unsuccessful and much criticized first generation brothers. The real interest for the water sector should be the pipe dream of the project to eliminate aeration and turn existing wastewater treatment facilities into biofuel production centres.
The pivotal outcome of the project will be cost. This was proved in the well documented closure of the US Department of Energy's algae research programme in 1996 after nearly 20 years of work. At the time it was estimated that the $40-60/bbl cost of producing algal oil just couldn't compete with petroleum for the foreseeable future.
However, it is the additional methane extracted from raw wastewater and algae residue that differentiates this project. It's not just reliant upon biodiesel produced from the algae. All-Gas has the chance to spearhead Europe into proving that algae biofuel, through the help of wastewater, could eventually be more competitive on a per barrel price with traditional oil.
CCRES ALGAE PROJECT 
part of 
Croatian Center of Renewable Energy Sources (CCRES)

ponedjeljak, 7. svibnja 2012.

CCRES - BIODIESEL



CROATIAN CENTER of RENEWABLE ENERGY SOURCES 
(CCRES)

Biodiesel

The Popular Biofuel

The fuels obtained from biomass materials, like the waste generated by plants, animals and humans beings, are called as the biofuels. The biofuels are well known alternative fuels used for the production of heat and electricity and also driving the vehicles. The biomass is considered to be a type of renewable sources of energy since it is available in unlimited quantity and will continue to do so for unlimited period of time. One of the most popular types of biofuels is biodiesel.

Biodiesel is obtained from the fresh or used vegetable oil and animal fats by the process called transesterification. Efforts are being made to obtain biodiesel from waste grease and oils. The modern methods have been discovered to obtain biodiesel from algae as well.

Early Diesel Engine and Biodiesel

Rudolph Diesel had invented diesel engine in the period dating back to 1890. Though the present diesel engine is being run entirely on petroleum diesel fuel, in the days of invention itself Rudolph had envisioned that his engine could be powered by vegetable oil and could be used in the remote areas of farmlands where petroleum diesel is not available, but where the vegetable oil can be obtained easily from the plants. This way the farmers would be able to run the vehicles used by them for farming by using the vegetable oil. Rudolph had carried out extensive research to run his engine on vegetable oil.

In fact biodiesel was one of the earliest fuels used for running the engines of the automobiles.

After Rudolph's death in 1913, the gasoline including diesel became much cheaper so the design of Rudolph's engine was modified so that it can run on petroleum diesel. It is indeed interesting to know that after almost 100 years, the engine developed by Rudolph is now being run on the same fuel i.e. biodiesel made from vegetable oil, as per its original vision.

Biodiesel used for Running Vehicles

As mentioned earlier, the original diesel engine was designed to run on biodiesel or vegetable oil. For all the vehicles manufactured after the year 1993 biodiesel can be used as the fuel in all diesel engines without making any changes in the fuel injection system. When one uses the biodiesel there may be very little or no change in the performance of the engine.

The properties of biodiesel are very similar to traditional diesel obtained from the crude oil. While the combustion of traditional diesel produces lots of air pollution and toxic gases, the burning of biodiesel is clean and it does not cause any environmental pollution.

Biodiesel can be used as the fuel for automobiles in the pure form or it can be mixed with petroleum diesel in various proportions to form the blends. The two most commonly used blends of biodiesel are B20 and B100. B20 is the blend of 20% of biodiesel and remaining percentage of petroleum diesel and is the most widely used blend in US. It also meets all the regulations under the Energy Policy Act (EPAct) documented in 1992. Most of the other fuel blends containing lesser than 20% of biodiesel can also used for the running the vehicles. B100 is the pure form of biodiesel and it can be used in the diesel engines only after making certain changes in the hosesand gaskets of the engine.

Controversies Related to Biodiesel

Now that biodiesel is being blended with petroleum diesel and is being used as the fuel, its demand is fast increasing. A number of farmers are tempted to grow the crops that would yield biodiesel at the cost of the food crops. Instead of using the fertilizers, pesticides and energy for the food crops, farmers are using them for the biodiesel crops. This leads to not only the misuse of the limited resources but also shortage of the food crops.

In some parts of the world large areas of forests have been cut down to grow sugarcane for ethanol and soybeans and palm-oil tress for making biodiesel. US government is making efforts to make sure the farming for biomass materials does not competes with the farming of food crops and that the farming of biomass would require lesser fertilizers and pesticides. A number of other sources for biodiesel are also being explored like used oils and greases and algae.

Benefits of Biodiesel

Here are some of the benefits of using biodiesel as a fuel:

1) Biodiesel can be easily blended with petroleum diesel and the mixture can be readily used for running the vehicles without carrying out any changes in the engine.

2) Though the properties of biodiesel are same as the petroleum diesel, the combustion of biodiesel produces no greenhouse and other gases that would harm the environment.

As the proportion of biodiesel increases in the petroleum diesel blend, its tendency to generate pollution reduces.

3) Biodiesel is made from plant oil and vegetable fats, which are biodegradable, so they can be easily disposed of. When biodiesel is leaked or split it does not harm the environment.

4) The country manufacturing and using biodiesel is less dependent on other countries for their fuel requirements. Biodiesel has the potential to make countries self-reliant for their future fuel requirements. Further, since biodiesel is obtained from the renewable source of energy, it could be considered an important fuel for future planning.


CCRES 
special thanks to   
Escapeartist, Inc
 CROATIAN CENTER of RENEWABLE ENERGY SOURCES 
(CCRES)