Prikazani su postovi s oznakom biodizel. Prikaži sve postove
Prikazani su postovi s oznakom biodizel. Prikaži sve postove

srijeda, 20. lipnja 2012.

Way to Create Biofuels



Way to Create Biofuels

Is there a new path to biofuels hiding in a handful of dirt? 
Lawrence Berkeley National Laboratory (Berkeley Lab) biologist Steve Singer leads a group that wants to find out. They’re exploring whether a common soil bacterium can be engineered to produce liquid transportation fuels much more efficiently than the ways in which advanced biofuels are made today.

The scientists are working with a bacterium called Ralstonia eutropha. It naturally uses hydrogen as an energy source to convert CO2 into various organic compounds.

The group hopes to capitalize on the bacteria’s capabilities and tweak it to produce advanced biofuels that are drop-in replacements for diesel and jet fuel. The process would be powered only by hydrogen and electricity from renewable sources such as solar or wind.

The goal is a biofuel—or electrofuel, as this new approach is called—that doesn’t require photosynthesis.

Why is this important? Most methods used to produce advanced biofuels, such as from biomass and algae, rely on photosynthesis. But it turns out that photosynthesis isn’t very efficient when it comes to making biofuel. Energy is lost as photons from the sun are converted to stored chemical energy in a plant, which is then converted to a fuel.

“We’re after a more direct way,” says Singer, who holds appointments with Berkeley Lab’s Earth Sciences Division and with the Joint BioEnergy Institute (JBEI), a multi-institutional partnership led by Berkeley Lab.

“We want to bypass photosynthesis by using a microbe that uses hydrogen and electricity to convert CO2 into a fuel,” he adds.

Widespread use of electrofuels would also reduce demands for land, water, and fertilizer that are traditionally required to produce biofuels.

Berkeley Lab’s $3.4 million electrofuel project was funded in 2010 by DOE’s Advanced Research Projects Agency-Energy (ARPA-E) program, which focuses on “high risk, high payoff concepts—technologies promising genuine transformation in the ways we generate, store and utilize energy.”

That pretty much describes electrofuels. ARPA-E estimates the technology has the potential to be ten times more efficient than current biofuel production methods. But electrofuels are currently confined to lab-scale tests. A lot of obstacles must be overcome before you’ll see it at the pump.

Fortunately, research is underway. The Berkeley Lab project is one of thirteen electrofuel projects sponsored by ARPA-E. And earlier this year, ARPA-E issued a request for information focused on the commercialization of the technology.

Singer’s group includes scientists from Virginia-based Logos Technologies and the University of California at Berkeley. The project’s co-principal investigators are Harry Beller, Swapnil Chhabra, and Nathan Hillson, who are also with Berkeley Lab and JBEI; Chris Chang, a UC Berkeley chemist and a faculty scientist with Berkeley Lab’s Chemical Sciences Division; and Dan MacEachran of Logos Technologies.

The scientists chose to work with R. eutropha because the bacterium is well understood and it’s already used industrially to make bioplastics.

They’re creating engineered strains of the bacterium at JBEI, all aimed at improving its ability to produce hydrocarbons. This work involves re-routing metabolic pathways in the bacteria. It also involves adding pathways from other microorganisms, such as a pathway engineered in Escherichia coli to produce medium-chain methyl ketones, which are naturally occurring compounds that have cetane numbers similar to those of typical diesel fuel.

The group is also pursuing two parallel paths to further boost production.

In the first approach, Logos Technologies is developing a two-liter bioelectrochemical reactor, which is a conventional fermentation vessel fitted with electrodes. The vessel starts with a mixture of bacteria, CO2, and water. Electricity splits the water into oxygen and hydrogen. The bacteria then use energy from the hydrogen to wrest carbon from CO2 and convert it to hydrocarbons, which migrate to the water’s surface. The scientists hope to skim the first batch of biofuel from the bioreactor in about one year.

In the second approach, the scientists want to transform the bacteria into self-reliant, biofuel-making machines. With help from Chris Chang, they’re developing ways to tether electrocatalysts to the bacteria’s surface. These catalysts use electricity to generate hydrogen in the presence of water.

The idea is to give the bacteria the ability to produce much of their own energy source. If the approach works, the only ingredients the bacteria will need to produce biofuel would be CO2, electricity, and water.

The scientists are now developing ways to attach these catalysts to electrodes and to the surface of the bacteria.

“We’re at the proof-of-principle stage in many ways with this research, but the concept has a lot of potential, so we’re eager to see where we can take this,” says Singer.
CCRES
 special thanks to 
Lawrence Berkeley National Laboratory
Croatian Center of Renewable Energy Sources (CCRES)

ponedjeljak, 7. svibnja 2012.

CCRES - BIODIESEL



CROATIAN CENTER of RENEWABLE ENERGY SOURCES 
(CCRES)

Biodiesel

The Popular Biofuel

The fuels obtained from biomass materials, like the waste generated by plants, animals and humans beings, are called as the biofuels. The biofuels are well known alternative fuels used for the production of heat and electricity and also driving the vehicles. The biomass is considered to be a type of renewable sources of energy since it is available in unlimited quantity and will continue to do so for unlimited period of time. One of the most popular types of biofuels is biodiesel.

Biodiesel is obtained from the fresh or used vegetable oil and animal fats by the process called transesterification. Efforts are being made to obtain biodiesel from waste grease and oils. The modern methods have been discovered to obtain biodiesel from algae as well.

Early Diesel Engine and Biodiesel

Rudolph Diesel had invented diesel engine in the period dating back to 1890. Though the present diesel engine is being run entirely on petroleum diesel fuel, in the days of invention itself Rudolph had envisioned that his engine could be powered by vegetable oil and could be used in the remote areas of farmlands where petroleum diesel is not available, but where the vegetable oil can be obtained easily from the plants. This way the farmers would be able to run the vehicles used by them for farming by using the vegetable oil. Rudolph had carried out extensive research to run his engine on vegetable oil.

In fact biodiesel was one of the earliest fuels used for running the engines of the automobiles.

After Rudolph's death in 1913, the gasoline including diesel became much cheaper so the design of Rudolph's engine was modified so that it can run on petroleum diesel. It is indeed interesting to know that after almost 100 years, the engine developed by Rudolph is now being run on the same fuel i.e. biodiesel made from vegetable oil, as per its original vision.

Biodiesel used for Running Vehicles

As mentioned earlier, the original diesel engine was designed to run on biodiesel or vegetable oil. For all the vehicles manufactured after the year 1993 biodiesel can be used as the fuel in all diesel engines without making any changes in the fuel injection system. When one uses the biodiesel there may be very little or no change in the performance of the engine.

The properties of biodiesel are very similar to traditional diesel obtained from the crude oil. While the combustion of traditional diesel produces lots of air pollution and toxic gases, the burning of biodiesel is clean and it does not cause any environmental pollution.

Biodiesel can be used as the fuel for automobiles in the pure form or it can be mixed with petroleum diesel in various proportions to form the blends. The two most commonly used blends of biodiesel are B20 and B100. B20 is the blend of 20% of biodiesel and remaining percentage of petroleum diesel and is the most widely used blend in US. It also meets all the regulations under the Energy Policy Act (EPAct) documented in 1992. Most of the other fuel blends containing lesser than 20% of biodiesel can also used for the running the vehicles. B100 is the pure form of biodiesel and it can be used in the diesel engines only after making certain changes in the hosesand gaskets of the engine.

Controversies Related to Biodiesel

Now that biodiesel is being blended with petroleum diesel and is being used as the fuel, its demand is fast increasing. A number of farmers are tempted to grow the crops that would yield biodiesel at the cost of the food crops. Instead of using the fertilizers, pesticides and energy for the food crops, farmers are using them for the biodiesel crops. This leads to not only the misuse of the limited resources but also shortage of the food crops.

In some parts of the world large areas of forests have been cut down to grow sugarcane for ethanol and soybeans and palm-oil tress for making biodiesel. US government is making efforts to make sure the farming for biomass materials does not competes with the farming of food crops and that the farming of biomass would require lesser fertilizers and pesticides. A number of other sources for biodiesel are also being explored like used oils and greases and algae.

Benefits of Biodiesel

Here are some of the benefits of using biodiesel as a fuel:

1) Biodiesel can be easily blended with petroleum diesel and the mixture can be readily used for running the vehicles without carrying out any changes in the engine.

2) Though the properties of biodiesel are same as the petroleum diesel, the combustion of biodiesel produces no greenhouse and other gases that would harm the environment.

As the proportion of biodiesel increases in the petroleum diesel blend, its tendency to generate pollution reduces.

3) Biodiesel is made from plant oil and vegetable fats, which are biodegradable, so they can be easily disposed of. When biodiesel is leaked or split it does not harm the environment.

4) The country manufacturing and using biodiesel is less dependent on other countries for their fuel requirements. Biodiesel has the potential to make countries self-reliant for their future fuel requirements. Further, since biodiesel is obtained from the renewable source of energy, it could be considered an important fuel for future planning.


CCRES 
special thanks to   
Escapeartist, Inc
 CROATIAN CENTER of RENEWABLE ENERGY SOURCES 
(CCRES)